首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamic data are reported revealing that pseudouridine (Ψ) can stabilize RNA duplexes when replacing U and forming Ψ-A, Ψ-G, Ψ-U and Ψ-C pairs. Stabilization is dependent on type of base pair, position of Ψ within the RNA duplex, and type and orientation of adjacent Watson–Crick pairs. NMR spectra demonstrate that for internal Ψ-A, Ψ-G and Ψ-U pairs, the N3 imino proton is hydrogen bonded to the opposite strand nucleotide and the N1 imino proton may also be hydrogen bonded. CD spectra show that general A-helix structure is preserved, but there is some shifting of peaks and changing of intensities. Ψ has two hydrogen donors (N1 and N3 imino protons) and two hydrogen bond acceptors because the glycosidic bond is C-C rather than C-N as in uridine. This greater structural potential may allow Ψ to behave as a kind of structurally driven universal base because it can enhance stability relative to U when paired with A, G, U or C inside a double helix. These structural and thermodynamic properties may contribute to the biological functions of Ψ.  相似文献   

2.
Numerous experimental techniques and computational studies, proposed in recent times, have revolutionized the understanding of protein-folding paradigm. The complete understanding of protein folding and intermediates are of medical relevance, as the aggregation of misfolding proteins underlies various diseases, including some neurodegenerative disorders. Here, we describe the unfolding of M-crystallin, a βγ-crystallin homologue protein from archaea, from its native state to its denatured state using multidimensional NMR and other biophysical techniques. The protein, which was earlier characterized to be a predominantly β-sheet protein in its native state, shows different structural propensities (α and β), under different denaturing conditions. In 2 M GdmCl, the protein starts showing two distinct sets of peaks, with one arising from a partially unfolded state and the other from a completely folded state. The native secondary structural elements start disappearing as the denaturant concentration approaches 4 M. Subsequently, the protein is completely unfolded when the denaturant concentration is 6 M. The 15N relaxation data (T1/T2), heteronuclear 1H-15N Overhauser effects (nOes), NOESY data, and other biophysical data taken together indicate that the protein shows a consistent, gradual change in its structural and motional preferences with increasing GdmCl concentration.  相似文献   

3.
J. Wang 《Genetics》1995,140(1):357-363
An exact recurrence equation for inbreeding coefficient is derived for a partially sib-mated population of N individuals mated in N/2 pairs. From the equation, a formula for effective size (N(e)) taking second order terms of 1/Ninto consideration is derived. When the family sizes are Poisson or equally distributed, the formula reduces to N(e) = [(4 - 3β)N/(4 - 2β)] + 1 or N(e) = [(4 - 3β)N/(2 - 2β)] - 8/(4 - 3β), approximately. For the special case of sib-mating exclusion and Poisson distribution of family size, the formula simplifies to N(e) = N + 1, which differs from the previous results derived by many authors by a value of one. Stochastic simulations are run to check our results where disagreements with others are involved.  相似文献   

4.
Pseudouridine (Ψ) is the most common noncanonical nucleotide present in naturally occurring RNA and serves a variety of roles in the cell, typically appearing where structural stability is crucial to function. Ψ residues are isomerized from native uridine residues by a class of highly conserved enzymes known as pseudouridine synthases. In order to quantify the thermodynamic impact of pseudouridylation on U-A base pairs, 24 oligoribonucleotides, 16 internal and eight terminal Ψ-A oligoribonucleotides, were thermodynamically characterized via optical melting experiments. The thermodynamic parameters derived from two-state fits were used to generate linearly independent parameters for use in secondary structure prediction algorithms using the nearest-neighbor model. On average, internally pseudouridylated duplexes were 1.7 kcal/mol more stable than their U-A counterparts, and terminally pseudouridylated duplexes were 1.0 kcal/mol more stable than their U-A equivalents. Due to the fact that Ψ-A pairs maintain the same Watson-Crick hydrogen bonding capabilities as the parent U-A pair in A-form RNA, the difference in stability due to pseudouridylation was attributed to two possible sources: the novel hydrogen bonding capabilities of the newly relocated imino group as well as the novel stacking interactions afforded by the electronic configuration of the Ψ residue. The newly derived nearest-neighbor parameters for Ψ-A base pairs may be used in conjunction with other nearest-neighbor parameters for accurately predicting the most likely secondary structure of A-form RNA containing Ψ-A base pairs.  相似文献   

5.

Background

Combining two long-acting bronchodilators with complementary mechanisms of action may provide treatment benefits to patients with chronic obstructive pulmonary disease (COPD) that are greater than those derived from either treatment alone. The efficacy and safety of a fixed-dose combination (FDC) of aclidinium bromide, a long-acting muscarinic antagonist, and formoterol fumarate, a long-acting β2-agonist, in patients with moderate to severe COPD are presented.

Methods

In this 24-week double-blind study, 1692 patients with stable COPD were equally randomized to twice-daily treatment with FDC aclidinium 400 μg/formoterol 12 μg (ACL400/FOR12 FDC), FDC aclidinium 400 μg/formoterol 6 μg (ACL400/FOR6 FDC), aclidinium 400 μg, formoterol 12 μg, or placebo administered by a multidose dry powder inhaler (Genuair®/Pressair®)*. Coprimary endpoints were change from baseline to week 24 in 1-hour morning postdose FEV1 (FDCs versus aclidinium) and change from baseline to week 24 in morning predose (trough) FEV1 (FDCs versus formoterol). Secondary endpoints were change from baseline in St. George’s Respiratory Questionnaire (SGRQ) total score and improvement in Transition Dyspnea Index (TDI) focal score at week 24. Safety and tolerability were also assessed.

Results

At study end, improvements from baseline in 1-hour postdose FEV1 were significantly greater in patients treated with ACL400/FOR12 FDC or ACL400/FOR6 FDC compared with aclidinium (108 mL and 87 mL, respectively; p < 0.0001). Improvements in trough FEV1 were significantly greater in patients treated with ACL400/FOR12 FDC versus formoterol (45 mL; p = 0.0102), a numerical improvement of 26 mL in trough FEV1 over formoterol was observed with ACL400/FOR6 FDC. Significant improvements in both SGRQ total and TDI focal scores were observed in the ACL400/FOR12 FDC group at study end (p < 0.0001), with differences over placebo exceeding the minimal clinically important difference of ≥4 points and ≥1 unit, respectively. All treatments were well tolerated, with safety profiles of the FDCs similar to those of the monotherapies.

Conclusions

Treatment with twice-daily aclidinium 400 μg/formoterol 12 μg FDC provided rapid and sustained bronchodilation that was greater than either monotherapy; clinically significant improvements in dyspnea and health status were evident compared with placebo. Aclidinium/formoterol FDC may be an effective and well tolerated new treatment option for patients with COPD.

Trial registration

Clinicaltrials.gov NCT01437397.*Registered trademarks of Almirall S.A., Barcelona, Spain; for use within the US as Pressair® and Genuair® within all other licensed territories.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0123-0) contains supplementary material, which is available to authorized users.  相似文献   

6.
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.  相似文献   

7.
Non-native protein conformers generated by mutation or chemical damage template aggregation of wild-type, undamaged polypeptides in diseases ranging from amyotrophic lateral sclerosis to cancer. We tested for such interactions in the natively monomeric human eye lens protein γd-crystallin, whose aggregation leads to cataract disease. The oxidation-mimicking W42Q mutant of γd-crystallin formed non-native polymers starting from a native-like state under physiological conditions. Aggregation occurred in the temperature range 35–45 °C, in which the mutant protein began to lose the native conformation of its N-terminal domain. Surprisingly, wild-type γd-crystallin promoted W42Q polymerization in a catalytic manner, even at mutant concentrations too low for homogeneous nucleation to occur. The presence of wild-type protein also downshifted the temperature range of W42Q aggregation. W42Q aggregation required formation of a non-native intramolecular disulfide bond but not intermolecular cross-linking. Transient WT/W42Q binding may catalyze this oxidative misfolding event in the mutant. That a more stable variant in a mixture can specifically promote aggregation of a less stable one rationalizes how extensive aggregation of rare damaged polypeptides can occur during the course of aging.  相似文献   

8.

Background

Staphylococcus aureus is one predominant cause of skin and soft-tissue infections (SSTIs), but little information exists regarding the characterization of S. aureus from non-native patients with SSTIs in China.

Methods

In this study, we enrolled 52 non-native patients with S. aureus SSTIs, and 65 native control patients with S. aureus SSTIs in Shanghai. 52 and 65 S. aureus isolates were collected from both groups, respectively. S. aureus isolates were characterized by antimicrobial susceptibility testing, toxin gene detection, and molecular typing with sequence type, spa type, agr group and SCCmec type.

Results

Methicillin-resistant S. aureus (MRSA) was detected in 8 non-native patients and 14 native patients with SSTIs. Overall, antimicrobial susceptibilities of S. aureus isolated from non-native patients were found higher than those from native patients. CC59 (ST338 and ST59) was found in a total of 14 isolates (4 from non-native patients; 10 from native patients), 9 of which were carrying lukS/F-PV (3 from non-native patients; 6 from native patients). ST7 was found in 12 isolates and all 12 isolates were found in native patients. The livestock-associated clone ST398 was found in 11 isolates (6 from non-native patients; 5 from native patients), and 5 ST398 lukS/F-PV-positive methicillin-susceptible S. aureus (MSSA) were all discovered among non-native patients. The molecular epidemiology of S. aureus isolated from non-native patients was quite different from those from native patients. lukS/F-PV was more frequent in isolates originating from non-native patients with SSTIs compared to native patients (31 vs. 7, P <0.0001).

Conclusions

CC59 was the most common clonal complex among patients with SSTIs in Shanghai. The other most common sequence types were ST7 and Livestock ST398. The molecular epidemiology of S. aureus isolated from non-native patients was quite different from those from native patients. S. aureus isolated from non-native patients was more likely to carry lukS/F-PV.  相似文献   

9.
A common hypothesis to explain the effect of litter mixing is based on the difference in litter N content between mixed species. Although many studies have shown that litter of invasive non-native plants typically has higher N content than that of native plants in the communities they invade, there has been surprisingly little study of mixing effects during plant invasions. We address this question in south China where Mikania micrantha H.B.K., a non-native vine, with high litter N content, has invaded many forested ecosystems. We were specifically interested in whether this invader accelerated decomposition and how the strength of the litter mixing effect changes with the degree of invasion and over time during litter decomposition. Using litterbags, we evaluated the effect of mixing litter of M. micrantha with the litter of 7 native resident plants, at 3 ratios: M1 (1∶4, = exotic:native litter), M2 (1∶1) and M3 (4∶1, = exotic:native litter) over three incubation periods. We compared mixed litter with unmixed litter of the native species to identify if a non-additive effect of mixing litter existed. We found that there were positive significant non-additive effects of litter mixing on both mass loss and nutrient release. These effects changed with native species identity, mixture ratio and decay times. Overall the greatest accelerations of mixture decay and N release tended to be in the highest degree of invasion (mix ratio M3) and during the middle and final measured stages of decomposition. Contrary to expectations, the initial difference in litter N did not explain species differences in the effect of mixing but overall it appears that invasion by M. micrantha is accelerating the decomposition of native species litter. This effect on a fundamental ecosystem process could contribute to higher rates of nutrient turnover in invaded ecosystems.  相似文献   

10.
11.
Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs.  相似文献   

12.
13.
We examined, by 1H and 31P NMR, the solution structure of a 16 bp non-palindromic DNA fragment (16M2) containing the HIV-1 NF-κB-binding site, in which the sequences flanking the κB site had been mutated. 31P NMR was particularly useful for obtaining structural information on the phosphodiester backbone conformation. Structural features were then compared with those of the two previously studied DNA fragments corresponding, respectively, to the native κB fragment (16N) and a fragment in which mutations have been introduced at the 5′ end of the κB site (16M1). For the mutated 16M2 duplex, NMR data showed that the BI–BII equilibrium, previously reported for the native fragment (16N) at the κB flanking steps, was lost. The role of the BI–BII equilibrium in NF-κB recognition by DNA was then investigated by electrophoretic mobility shift assay. We found that the isolated κB site has the potential to bind efficiently due to the BI–BII equilibrium of the κB flanking sequences.  相似文献   

14.
α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100–200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.  相似文献   

15.

Background

Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only.

Methodology/Principal Findings

Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer.

Conclusions/Significance

Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition.  相似文献   

16.
The production of native α/β tubulin heterodimer in vitro depends on the action of cytosolic chaperonin and several protein cofactors. We previously showed that four such cofactors (termed A, C, D, and E) together with native tubulin act on β-tubulin folding intermediates generated by the chaperonin to produce polymerizable tubulin heterodimers. However, this set of cofactors generates native heterodimers only very inefficiently from α-tubulin folding intermediates produced by the same chaperonin. Here we describe the isolation, characterization, and genetic analysis of a novel tubulin folding cofactor (cofactor B) that greatly enhances the efficiency of α-tubulin folding in vitro. This enabled an integrated study of α- and β-tubulin folding: we find that the pathways leading to the formation of native α- and β-tubulin converge in that the folding of the α subunit requires the participation of cofactor complexes containing the β subunit and vice versa. We also show that sequestration of native α-or β-tubulins by complex formation with cofactors results in the destabilization and decay of the remaining free subunit. These data demonstrate that tubulin folding cofactors function by placing and/or maintaining α-and β-tubulin polypeptides in an activated conformational state required for the formation of native α/β heterodimers, and imply that each subunit provides information necessary for the proper folding of the other.  相似文献   

17.
Urea effect on conformation and thermal stabilities in nucleohistone and NaCl-treated partially dehistonized nucleohistones has been studied by circular dichroism (CD) and thermal denaturation. Urea imposes a CD change at 278mm of DNA base pairs in native and NaCl-treated nucleohistones which can be decomposed into two parts: a decrease in Δε278 for histone-free base pairs and an increase for histone-bound base pairs. The reduction by urea of Δε220 of bound histones is approximately proportional to the increase of Δε278 of histone-bound base pairs. Urea also lowers the melting temperatures of base pairs both free and bound by histones. The presence of urea indeed destroys the secondary structure of bound histones, causing changes in the conformation and thermal stabilities of histone-bound base pairs in nucleohistone. Such a urea perturbation on nucleohistone conformation is reversible.  相似文献   

18.
19.

Background

The combination of aclidinium bromide, a long-acting anticholinergic, and formoterol fumarate, a long-acting beta2-agonist (400/12 μg twice daily) achieves improvements in lung function greater than either monotherapy in patients with chronic obstructive pulmonary disease (COPD), and is approved in the European Union as a maintenance treatment. The effect of this combination on symptoms of COPD and exacerbations is less well established. We examined these outcomes in a pre-specified analysis of pooled data from two 24-week, double-blind, parallel-group, active- and placebo-controlled, multicentre, randomised Phase III studies (ACLIFORM and AUGMENT).

Methods

Patients ≥40 years with moderate to severe COPD (post-bronchodilator forced expiratory volume in 1 s [FEV1]/forced vital capacity <70 % and FEV1 ≥30 % but <80 % predicted normal) were randomised (ACLIFORM: 2:2:2:2:1; AUGMENT: 1:1:1:1:1) to twice-daily aclidinium/formoterol 400/12 μg or 400/6 μg, aclidinium 400 μg, formoterol 12 μg or placebo via Genuair™/Pressair®. Dyspnoea (Transition Dyspnoea Index; TDI), daily symptoms (EXAcerbations of Chronic pulmonary disease Tool [EXACT]-Respiratory Symptoms [E-RS] questionnaire), night-time and early-morning symptoms, exacerbations (Healthcare Resource Utilisation [HCRU] and EXACT definitions) and relief-medication use were assessed.

Results

The pooled intent-to-treat population included 3394 patients. Aclidinium/formoterol 400/12 μg significantly improved TDI focal score versus placebo and both monotherapies at Week 24 (all p < 0.05). Over 24 weeks, significant improvements in E-RS total score, overall night-time and early-morning symptom severity and limitation of early-morning activities were observed with aclidinium/formoterol 400/12 μg versus placebo and both monotherapies (all p < 0.05). The rate of moderate or severe HCRU exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg compared with placebo (p < 0.05) but not monotherapies; the rate of EXACT-defined exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg versus placebo (p < 0.01) and aclidinium (p < 0.05). Time to first HCRU or EXACT exacerbation was longer with aclidinium/formoterol 400/12 μg compared with placebo (all p < 0.05) but not the monotherapies. Relief-medication use was reduced with aclidinium/formoterol 400/12 μg versus placebo and aclidinium (p < 0.01).

Conclusions

Aclidinium/formoterol 400/12 μg significantly improves 24-hour symptom control compared with placebo, aclidinium and formoterol in patients with moderate to severe COPD. Furthermore, aclidinium/formoterol 400/12 μg reduces the frequency of exacerbations compared with placebo.

Trial registration

NCT01462942 and NCT01437397 (ClinicalTrials.gov)

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0250-2) contains supplementary material, which is available to authorized users.  相似文献   

20.
Mutations in the amyloid β-protein (Aβ) precursor gene cause autosomal dominant Alzheimer disease in a number of kindreds. In two such kindreds, the English and the Tottori, the mutations produce amyloid β-proteins containing amino acid substitutions, H6R and D7N, respectively, at the peptide N terminus. To elucidate the structural and biological effects of the mutations, we began by examining monomer conformational dynamics and oligomerization. Relative to their wild type homologues, and in both the Aβ40 and Aβ42 systems, the English and Tottori substitutions accelerated the kinetics of secondary structure change from statistical coil → α/β → β and produced oligomer size distributions skewed to higher order. This skewing was reflected in increases in average oligomer size, as measured using electron microscopy and atomic force microscopy. Stabilization of peptide oligomers using in situ chemical cross-linking allowed detailed study of their properties. Each substitution produced an oligomer that displayed substantial β-strand (H6R) or α/β (D7N) structure, in contrast to the predominately statistical coil structure of wild type Aβ oligomers. Mutant oligomers functioned as fibril seeds, and with efficiencies significantly higher than those of their wild type homologues. Importantly, the mutant forms of both native and chemically stabilized oligomers were significantly more toxic in assays of cell physiology and death. The results show that the English and Tottori mutations alter Aβ assembly at its earliest stages, monomer folding and oligomerization, and produce oligomers that are more toxic to cultured neuronal cells than are wild type oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号