首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We investigated the role of nitric oxide (NO) in ABA-inhibition of stomatal opening in Vicia faba L. in different size dishes. When a large dish (9 cm diameter) was used, ABA induced NO synthesis and the NO scavenger reduced ABA-inhibition of stomatal opening. When a small dish (6 cm diameter) was used, ABA induced stomatal closure and inhibited stomatal opening. The NO scavenger was able to reduce ABA-induced stomatal closure, but unable to reverse ABA-inhibition of stomatal opening. Furthermore, NO was not synthesized in response to ABA, indicating that NO is not required for ABA-inhibition of stomatal opening in the small dish. These results indicated that an NO-dependent and an NO-independent signaling pathway participate in ABA signaling pathway. An NO-dependent pathway is the major player in ABA-induced stomatal closure. However, in ABA-inhibition of stomatal opening, an NO-dependent and an NO-independent pathway act: different signaling molecules participate in ABA-signaling cascade under different environmental condition.Key words: ABA, environmental condition, nitric oxide, stomata, Vicia faba LNitric oxide (NO) is a key signaling molecule in plants.1,2 It functions in disease resistance and programmed cell death,3,4 root development,5,6 and plant responses to various abiotic stresses.1,2,7,8 In addition, NO is required for stomatal closure in response to ABA in several species including Arabidopsis, Vicia faba, pea, tomato, barley, and wheat.911 ABA-inhibition of stomatal opening is a distinct process from ABA-induced stomatal closure.12,13 In V. faba, these two processes employ a similar signaling pathway; NO is also a second messenger molecule for ABA-inhibition of stomatal opening in a large dish.14 In this study, we examined the role of NO in ABA-inhibition of stomatal opening using different dish sizes. In a small dish, NO is not involved in ABA-inhibition of stomatal opening: the NO-independent signaling pathway is the major player in it.  相似文献   

4.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

5.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

6.
Brassinosteroids (BRs) are a family of plant steroid hormones that play diverse roles in many aspects of plant growth and development. For example, BRs promote seed germination by counteracting the inhibitory effect of ABA and regulate plant reproductive development, thus affecting seed yield. We have recently reported that MOTHER OF FT AND TFL1 (MFT) regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Here, we show that MFT function is also relevant to the BR signaling pathway. In mft loss-of-function mutants, the application of BR could not fully antagonize the inhibitory effect of exogenous ABA on seed germination, suggesting that BR promotes seed germination against ABA partly through MFT. In addition, mft enhances the low-fertility phenotype of det2 in which BR biosynthesis is blocked. This phenotype, together with the observation that MFT is expressed in gametophytes and developing seeds, suggests that MFT and BR play redundant roles in regulating fertility. Therefore, these results suggest that MFT affects seed germination and fertility relevant to the BR signaling pathway.Key words: Arabidopsis, brassinosteroid, abscisic acid, fertility, seed germinationPlant hormones exert profound effects on many fundamental processes during plant growth and development. With respect to seed development and germination, it has long been known that abscisic acid (ABA) and gibberellin (GA) are two major types of phytohormones that play antagonistic roles in regulating these events. Not until recently, another group of phytohormones, namely brassinosteroids (BRs), has also been found to counteract the inhibitory effect of ABA on seed germination.1,2 In addition, BR has been suggested to act in parallel with GA to promote cell elongation and germination.1,3,4BRs are a class of polyhydroxysteroids that are found in a wide variety of plant species.5 They can be detected in almost every plant tissue, with the highest abundance in the pollen and seeds.6 The most active component in the family of BRs is 24-epibrassinolide (BL), which is capable of activating BR signaling.6 In Arabidopsis, when the early steps of BR biosynthesis are blocked, the resulting defects include reduced male fertility under normal growth conditions7,8 and decreased germination percentage in the presence of exogenous ABA.1 Thus, BR plays an indispensible role in the control of seed development and also contributes to the regulation of seed germination.We have previously reported that MOTHER OF FT AND TFL1 (MFT) responds to both ABA and GA signals to regulate seed germination.9 Here we show that MFT functions in regulating seed germination and fertility, which is also relevant to the BR signaling pathway. Thus, MFT seems to function specifically in seeds in response to various phytohormones.  相似文献   

7.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

11.
12.
Strigolactones (SLs) have been recently identified as a new group of plant hormones or their derivatives thereof, shown to play a role in plant development. Evolutionary forces have driven the development of mechanisms in plants that allow adaptive adjustments to a variety of different habitats by employing plasticity in shoot and root growth and development. The ability of SLs to regulate both shoot and root development suggests a role in the plant''s response to its growth environment. To play this role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward increased adaptive adjustment. Here, the effects of SLs on shoot and root development are presented, and possible feedback loops between SLs and two environmental cues, light and nutrient status, are discussed; these might suggest a role for SLs in plants'' adaptive adjustment to growth conditions.Key words: strigolactones, light, nutrient status, root, shoot, branching, lateral roots, root hairsStrigolactones (SLs) are carotenoid-derived terpenoid lactones suggested to stem from the carotenoid pathway1 via the activity of various oxygenases.2,3 SLs production has been demonstrated in both monocotyledons and eudicotyledons (reviewed in ref. 4), suggesting their presence in many plant species.5 SLs are synthesized mainly in the roots and in some parts of the stem and then move towards the shoot apex (reviewed ref. 7).6,8,9SLs were first characterized more than 40 years ago as germination stimulants of the parasitic plants Striga and Orobanche and later, as stimulants of arbuscular mycorrhiza hyphal branching as well (reviewed in ref. 4, 1013). Recently, SLs or derivatives thereof, have been identified as a new group of plant hormones, shown to play a role in inhibition of shoot branching,2,3,8,9 thereby affecting shoot architecture; more recently they have also been shown to affect root growth by affecting auxin efflux.14Plants have developed mechanisms that allow adaptive adjustments to a variety of different habitats by employing plasticity in their growth and development.15 Shoot architecture is affected by environmental cues, such as light quality and quantity and nutrient status.1619 Root-system architecture and development are affected by environmental conditions such as nutrient availability (reviewed in ref. 20, 21). At the same time, plant hormones are known to be involved in the regulation of plant growth, development and architecture (reviewed in ref. 2224) and to be mediators of the effects of environmental cues on plant development; one classic example is auxin''s role in the plant''s shade-avoidance response (reviewed in ref. 25).The ability of SLs to regulate shoot and root development suggests that these phytohormones also have a role in the plant''s growth response to its environment. To play this putative role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward enhancing its adaptive adjustment. The present review examines the SLs'' possible role in adaptive adjustment of the plant''s response to growth conditions, by discussing their effect on plant development and the possible associations and feedback loops between SLs and two environmental cues: light and nutrient status.  相似文献   

13.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGFβ) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGFβ-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.Key words: wound healing, migration, matrix metalloproteinase, transforming growth factor, skin, corneaWound healing is a well-ordered but complex process involving many cellular activities including inflammation, growth factor or cytokine secretion, cell migration and proliferation. Migration of skin keratinocytes and corneal epithelial cells requires the coordinated expression of various growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), small GTPases, and macrophage stimulating protein (reviewed in refs. 1 and 2). The epithelial cells in turn regulate the expression of matrix metalloproteinases (MMPs), extracellular matrix (ECM) proteins and integrins during cell migration.1,3,4 TGF-β is a well-known cytokine involved in processes such as cell growth inhibition, embryogenesis, morphogenesis, tumorigenesis, differentiation, wound healing, senescence and apoptosis (reviewed in refs. 5 and 6). It is also one of the most important cytokines responsible for promoting the migration of skin keratinocytes and corneal epithelial cells.3,6,7TGFβ has two quite different effects on skin keratinocytes: it suppresses their multiplication and promotes their migration. The TGFβ-induced cell growth inhibition is usually mediated by Smad signaling, which upregulates expression of the cell cycle inhibitor p21WAF1/Cip1 or p12CDK2-AP1 in HaCaT skin keratinocyte cells and human primary foreskin keratinocytes.8,9 Keratinocyte migration in wounded skin is associated with strong expression of TGFβ and MMPs,1 and TGFβ stimulates the migration of manually scratched wounded HaCaT cells.10 TGFβ also induces cell migration and inhibits proliferation of injured corneal epithelial cells, whereas it stimulates proliferation of normal corneal epithelial cells via effects on the MAPK family and Smad signaling.2,7 Indeed, skin keratinocytes and corneal epithelial cells display the same two physiological responses to TGFβ during wound healing; cell migration and growth inhibition. However as mentioned above, TGFβ has a different effect on normal cells. For example, it induces the epithelial to mesenchymal transition (EMT) of normal mammary cells and lens epithelial cells.11,12 It also promotes the differentiation of corneal epithelial cells, and induces the fibrosis of various tissues.2,6The MMPs are a family of structurally related zinc-dependent endopeptidases that are secreted into the extracellular environment.13 Members of the MMP family have been classified into gelatinases, stromelysins, collagenases and membrane type-MMPs (MT-MMPs) depending on their substrate specificity and structural properties. Like TGFβ, MMPs influence normal physiological processes including wound healing, tissue remodeling, angiogenesis and embryonic development, as well as pathological conditions such as rheumatoid arthritis, atherosclerosis and tumor invasion.13,14The expression patterns of MMPs during skin and cornea wound healing are well studied. In rats, MMP-2, -3, -9, -11, -13 and -14 are expressed,15 and in mice, MMP-1, -2, -3, -9, -10 and -14 are expressed during skin wound healing.1 MMP-1, -3, -7 and -12 are increased in corneal epithelial cells during Wnt 7a-induced rat cornea wound healing.16 Wound repair after excimer laser keratectomy is characterized by increased expression of MMP-1, -2, -3 and -9 in the rabbit cornea, and MMP-2, -9 in the rat cornea.17,18 The expression of MMP-2 and -9 during skin keratinocyte and corneal epithelial cell migration has been the most thoroughly investigated, and it has been shown that their expression generally depends on the activity of MMP-14. MMP-14 (MT1-MMP) is constitutively anchored to the cell membrane; it activates other MMPs such as MMP-2, and also cleaves various types of ECM molecules including collagens, laminins, fibronectin as well as its ligands, the integrins.13 The latent forms of some cytokines are also cleaved and activated by MMP-14.19 Overexpression of MMP-14 protein was found to stimulate HT1080 human fibrosarcoma cell migration.20 In contrast, the attenuation of MMP-14 expression using siRNA method decreased fibroblast invasiveness,21 angiogenesis of human microvascular endothelial cells,22 and human skin keratinocyte migration.10 The latter effect was shown to result from lowering MMP-9 expression. Other studies have shown that EGF has a critical role in MMP-9 expression during keratinocyte tumorigenesis and migration.23,24 On the other hand, TGFβ modulates MMP-9 production through the Ras/MAPK pathway in transformed mouse keratinocytes and NFκB induces cell migration by binding to the MMP-9 promoter in human skin primary cultures.25,26 Enhanced levels of pro-MMP-9 and active MMP-9 have also been noted in scratched corneal epithelia of diabetic rats.27There is evidence that MMP-14 activates a number of intracellular signaling pathways including the MAPK family pathway, focal adhesion kinase (FAK), Src family, Rac and CD44, during cell migration and tumor invasion.19,20,28 In COS-7 cells, ERK activation is stimulated by overexpression of MMP-14 and is essential for cell migration.29 These observations all indicate that MMP-14 plays an important role in cell migration, not only by regulating the activity or expression of downstream MMPs but also by processing and activating migration-associated molecules such as integrins, ECMs and a variety of intracellular signaling pathays.30Cell migration during wound healing is a remarkably complex phenomenon. TGFβ is just one small component of the overall process of wound healing and yet it triggers a multitude of reactions needed for cell migration. It is important to know what kinds of molecules are expressed when cell migration is initiated, but it is equally important to investigate the roles of these molecules and how their expression is regulated. Despite the availability of some information about how MMPs and signaling molecules can influence each other, much remains to be discovered in this area. It will be especially important to clarify how MMP-14 influences other signaling pathways since its role in cell migration is not restricted to digesting ECM molecules but also includes direct or indirect activation of cellular signaling pathways.  相似文献   

14.
15.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

16.
To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were indentified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.Key words: Arabidopsis, blue light, chloroplast velocity, coiled-coil region, organelle movement, phototropin, protein-protein interactionIntracellular locations of chloroplasts change in response to different light conditions to capture sunlight efficiently for energy production through photosynthesis. Chloroplasts move toward weak light to maximize light capture (the accumulation response),1,2 and away from strong light to reduce photodamage (the avoidance response).3 In higher plants such as Arabidopsis thaliana, the responses are induced by blue light-dependent manner.1,2 Recently, chloroplast actin (cp-actin) filaments were found to be involved in chloroplast photorelocation movement and positioning.4,5 The cp-actin filaments are localized at the interface between the chloroplast and the plasma membrane to anchor the chloroplast to the plasma membrane, and are relocalized to the leading edge of chloroplasts before and during the movement.4,5 The difference of cp-actin filament amounts between the front and the rear halves of chloroplasts determines the chloroplast movement velocity; as the difference increases, chloroplast velocity also increases.4,5Several proteins have been reported to be involved in chloroplast movement. The blue light receptors, phototropin 1 (phot1) and phot2, mediate the accumulation response,6 and phot2 solely mediates the avoidance response.7,8 Chloroplast Unusual Positioning 1 (CHUP1), Kinesin-like Protein for Actin-Based Chloroplast Movement 1 (KAC1) and KAC2 are involved in the cp-actin filament formation.4,911 Other proteins with unknown molecular function involved in the chloroplast movement responses have also been reported. They are J-domain Protein Required for Chloroplast Accumulation Response 1 (JAC1),12,13 Plastid Movement Impaired 1 (PMI1),14 a long coiled-coil protein Plastid Movement Impaired 2 (PMI2), a PMI2-homologous protein PMI15,15 and THRUMIN1.16Recently, we characterized two plant-specific coiled-coil proteins, Weak Chloroplast Movement under Blue Light 1 (WEB1) and PMI2, which regulate the velocity of chloroplast photorelocation movement.17 In this mini-review article, we discuss about molecular function of WEB1 and PMI2 in chloroplast photorelocation movement, and also define the WEB1/PMI2-related (WPR) protein family as a new protein family for protein-protein interaction.  相似文献   

17.
It has been estimated that a human cell is confronted with 1 million DNA lesions every day, one fifth of which may originate from the activity of Reactive Oxygen Species (ROS) alone [1,2]. Terminally differentiated neurons are highly active cells with, if any, very restricted regeneration potential [3]. In addition, genome integrity and maintenance during neuronal development is crucial for the organism. Therefore, highly accurate and robust mechanisms for DNA repair are vital for neuronal cells. This requirement is emphasized by the long list of human diseases with neurodegenerative phenotypes, which are either caused by or associated with impaired function of proteins involved in the cellular response to genotoxic stress [4-8]. Ataxia Telangiectasia Mutated (ATM), one of the major kinases of the DNA Damage Response (DDR), is a node that links DDR, neuronal development, and neurodegeneration [2,9-12]. In humans, inactivating mutations of ATM lead to Ataxia-Telangiectasia (A-T) disease [11,13], which is characterized by severe cerebellar neurodegeneration, indicating an important protective function of ATM in the nervous system [14]. Despite the large number of studies on the molecular cause of A-T, the neuroprotective role of ATM is not well established and is contradictory to its general proapoptotic function. This review discusses the putative functions of ATM in neuronal cells and how they might contribute to neuroprotection.  相似文献   

18.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号