首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to optimal foraging theory, spiders should adapt their web building to environmental variations. Until now, there was no data on the influence of simultaneous information coming from different environmental factors on web building behaviour. Under laboratory conditions, we studied the behaviour of Zygiella x-notata in the presence of prey, conspecifics, or both simultaneously. There was a stimulating effect of prey, but web building was not affected by the presence of conspecifics. When spiders and prey were present simultaneously, the effect was similar to that of prey alone; it seemed that there was no interactive influence of both factors. We discussed about the use of environmental information by spiders in foraging behaviour.  相似文献   

2.
Zygiella x-notata is an orb-weaving spider that often renews its trap daily. Web building has associated costs and benefits, and building successive webs may have consequences for lifetime reproductive success. In the laboratory, we tested the ability of Z. x-notata to modify its building behaviour in response to various stages in predation (prey detection, capture and ingestion) experienced with a previous web. We determined which stages provided information for the spiders. Spiders that detected, captured and ingested prey and then rebuilt their web used less silk and made a smaller capture area than in the previous web. There was no effect of prey detection alone on the next web. Capture without feeding gave the same results as capture followed by feeding. The spiders that ate prey without detection and capture (feeding by hand) had the same energetic gains as spiders that caught prey but delayed building a new web. The spiders thus showed plasticity in web-building behaviour and in the amount of silk used (energetic investment) in the short term (from one web to the next). Changes in body condition may therefore influence web construction. Moreover, information gained during prey capture appeared to influence the size and structure of the next web. This ability should enable spiders to adapt their web building to maximize their fitness. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

3.
Stegodyphus lineatus (Eresidae) is a desert spider that buildsan aerial capture web on bushes in the Negev desert in southernIsrael. Web building for spiders is costly in energy, time,and risk of predation. Spiders should trade-off these costswith the benefits in terms of prey capture. We tested the hypothesisthat the previous foraging success of the spider influencesthe effort invested in foraging. Specifically, we asked whetheran increase in food intake causes spiders to reduce web renewalactivity and web size. Alternatively, time constraints on foragingand development, resulting from a short growing season, couldinduce spiders to continue foraging even when supplemented withprey. The cost of web building was measured as time and massloss. To build an average size web (about 150 cm2), we calculatedthat a spider requires 6 h and that spiders lose 3%-7% of their weight.In field experiments, spiders responded differently to food supplementationin 2 different years. In 1994, they improved their condition comparedto individuals whose webs were removed to reduce foraging opportunitiesand compared to control spiders. In 1995, spiders tested earlier inthe season than the previous year did not improve their conditionin response to prey supplementation. Nonetheless, in both years, food-supplementedspiders built significantly smaller webs than food-deprived andcontrol spiders. This result was confirmed in a laboratory experiment whereprey intake was controlled. We conclude that for S. lineatus immediateforaging risks outweigh the potential time constraints on foraging.  相似文献   

4.
5.
Aging is often associated with reduced behavioral performance such as decreased locomotion or food consumption, related to a deterioration in physiological functions. In orb-web spiders, webs are used to capture prey and aging can affect web-building behavior and web structure. Here, we investigated the effect of aging on prey capture in the orb-web spider Zygiella x-notata. The ability of adult females to capture flies was examined at different ages. The rate of prey capture did not change with age, but older spiders took more time to subdue and capture the prey. Alterations which appeared in web structure with age (increase in the number of anomalies affecting radii and capture spiral) affected prey capture behavior. Furthermore, the analysis of individual performance (carried out on 17 spiders at two different ages) showed that older females spent more time handling the prey and finding it in the web. Our results suggest that, in the laboratory, age does not affect prey capture rates but it influences prey capture behavior by affecting web structure or/and spider motor functions.  相似文献   

6.
Prey captured by a predator may attract kleptoparasites which could significantly reduce the amount of food consumed. Stegodyphus lineatus, a cribellate spider, builds an energetically costly web. Ants raid the webs of S. lineatus to steal prey and behave as kleptoparasites. We investigated ant raids in a natural population of S. lineatus and their influence on the spider’s foraging behaviour. Considering spiders that had captured a prey, 31.2% suffered an ant raid within 24 h after the prey capture. Experimental tests showed that the response to ant raid is to delay web rebuilding and this was independent of a spider’s previous foraging success. There was a tendency for spiders that were exposed to ants to build larger webs. Neither prey-handling duration nor prey consumption was modified after exposure to ants. These results suggest that Stegodyphus lineatus adapt its web-building behaviour in response to the risk of kleptoparasitism.  相似文献   

7.
The reach of artificial light at night (ALAN) is growing rapidly around the globe, including the increasing use of energy‐efficient LED lights. Many studies document the physiological costs of light at night, but far fewer have focused on the potential benefits for nocturnal insectivores and the likely ecological consequences of shifts in predator–prey relationships. We investigated the effects of ALAN on the foraging behaviour and prey capture success in juvenile Australian garden orb‐web spiders (Eriophora biapicata). Laboratory experiments demonstrated that juvenile spiders were attracted to LED lights when choosing foraging sites, but prey availability was a stronger cue for remaining in a foraging site. Field experiments revealed a significant increase in prey capture rates for webs placed near LED lights. This suggests that any physiological costs of light at night may be offset by the foraging benefits, perhaps partially explaining recently observed increases in the size, fecundity and abundance of some orb‐web spider species in urban environments. Our results highlight the potential long‐term consequences of night lighting in urban ecosystems, through the impact of orb‐web spiders on insect populations.  相似文献   

8.
蛛网结构性能及其适应性   总被引:3,自引:1,他引:2  
卓春晖  蒋平  王昌河  郭聪 《四川动物》2006,25(4):898-902
蛛网是蜘蛛的捕食工具,蛛网的结构性能不仅影响蜘蛛的捕食效率,也关系着蜘蛛的捕食投入。在不同的内外环境条件影响下,蜘蛛会通过蛛网结构性能上的相应变化来调整捕食策略和维持网结构的稳定性。本文主要综述了蛛网的结构性能以及蜘蛛通过蛛网结构性能表现出的对环境因子的适应性。  相似文献   

9.
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.  相似文献   

10.
Abstract The foraging behaviour, web characteristics and prey availability of two sympatric orb-weaving spiders, Nephila plumipes and Eriophora transmarina (Araneae: Araneoidea), are compared. The spiders are similarly sized but have different temporal foraging patterns. Nephila plumipes spins a relatively permanent web and captures most of its prey during the day. Eriophora transmarina only forages at night, spinning a new web every night and usually dismantling it at dawn. These different foraging activities are most likely to be responsible for the observed differences in the types and rates of prey capture: E. transmarina captured mostly Lepidoptera that were more abundant at night than during the day, while N. plumipes captured mostly Hymenoptera that were more abundant during the day than at night. While nocturnal E. transmarina have less time available for foraging than the diurnal N. plumipes, the former has a substantially higher nocturnal prey capture rate. We argue that the difference between the species in their prey capture rates are likely to be due to differences in the architecture of their webs.  相似文献   

11.
Context-dependent foraging behaviour is acknowledged and well documented for a diversity of animals and conditions. The contextual determinants of plant foraging behaviour, however, are poorly understood. Plant roots encounter patchy distributions of nutrients and soil fungi. Both of these features affect root form and function, but how they interact to affect foraging behaviour is unknown. We extend the use of the marginal value theorem to make predictions about the foraging behaviour of roots, and test our predictions by manipulating soil resource distribution and inoculation by soil fungi. We measured plant movement as both distance roots travelled and time taken to grow through nutrient patches of varied quality. To do this, we grew Achillea millefolium in the centers of modified pots with a high-nutrient patch and a low-nutrient patch on either side of the plant (heterogeneous) or patch-free conditions (homogeneous). Fungal inoculation, but not resource distribution, altered the time it took roots to reach nutrient patches. When in nutrient patches, root growth decreased relative to homogeneous soils. However, this change in foraging behaviour was not contingent upon patch quality or fungal inoculation. Root system breadth was larger in homogeneous than in heterogeneous soils, until measures were influenced by pot edges. Overall, we find that root foraging behaviour is modified by resource heterogeneity but not fungal inoculation. We find support for predictions of the marginal value theorem that organisms travel faster through low-quality than through high-quality environments, with the caveat that roots respond to nutrient patches per se rather than the quality of those patches.  相似文献   

12.
1. Fish can play an important role in coupling benthic and pelagic habitats by consuming benthic prey and providing essential nutrients to algae in dissolved form. However, little is known about the factors affecting the magnitude of this nutrient subsidy. 2. Using laboratory and mesocosm experiments we evaluated how varying ingestion rates of bluegill sunfish (Lepomis macrochirus) affects fish excretion rates of both nitrogen (N) and phosphorus (P). During the 10‐week mesocosm experiment, we also evaluated how varying ingestion rates may affect plankton community dynamics, and nutrient flux between pelagic and benthic habitats. Lastly, bioenergetic/mass balance models were used to examine the nutrient stoichiometry of fish body composition and excretion products. 3. Under laboratory conditions, both N and P excretion rates increased with increased ingestion of benthic prey surrogates (earthworms). This effect was more pronounced for N than P. Furthermore, under the more realistic conditions of the mesocosm experiment ingestion rate had no significant effect on P excretion rate. 4. Increased fish ingestion rate in the mesocosm experiment increased total algal biomass and the flux of nutrients from the water column to sediments. Effects of variable ingestion were much stronger on periphyton biomass and algal sedimentation rates than on phytoplankton or zooplankton biomass or composition. 5. Fish body nutrient composition was greatly affected by ingestion rate. N content increased and P content decreased with ingestion rate. As a result, the N : P ratio of fish bodies also increased with ingestion rate. The N : P ratio of nutrients excreted by fish also increased with ingestion rate, counter to predictions of stoichiometric theory, which predicts that excreted N : P ratio is negatively correlated to body N : P. However, this finding can be explained by relaxing the assumption of constant nutrient assimilation rates, and our mass balance data suggest that assimilation rates vary indeed with ingestion rate. 6. Our study provides experimental evidence that translocation of benthic‐derived nutrients by fish can affect the flux of nutrients among habitats, while also suggesting that stoichiometry models need to better incorporate how variable ingestion rates affect nutrient assimilation and excretion rates.  相似文献   

13.
Intensification of land‐use in agricultural landscapes is responsible for a decline of biodiversity which provide important ecosystem services like pest‐control. Changes in landscape composition may also induce behavioural changes of predators in response to variation in the biotic or abiotic environment. By controlling for environmentally confounding factors, we here demonstrate that the orb web spider Araneus diadematus alters its web building behaviour in response to changes in the composition of agricultural landscapes. Thereby, the species increases its foraging efficiency (i.e. investments in silk and web asymmetry) with an increase of agricultural land‐use at intermediate spatial scales. This intensification is also related to a decrease in the abundance of larger prey. A negative effect of landscape properties at similar spatial scales on spider fitness was recorded when controlling for relative investments in capture thread length. This study consequently documents the web building flexibility in response to changes in landscape composition, possibly due to changes in prey availability.  相似文献   

14.
Consumer-driven nutrient recycling, the release of chemicals as byproducts and excesses of consumer physiology, can alter ecosystems by changing the availability of limiting nutrients at the base of the food web. The mere presence of predators can alter consumer physiology by restricting food intake and inducing stress. Predation risk, then, can influence ecosystem function by modifying the role of prey as nutrient recyclers, yet there are few empirical tests of how predation risk alters nutrient recycling by prey. Here, we present the results of a test for the effects of predation risk on the C and N budgets of Trinidadian guppies (Poecilia reticulata). We reared female guppies for 7 weeks on diets of varying quality, and we compared control individuals to those exposed continuously to chemical cues emitted by a guppy predator, Crenicichla alta. We measured food consumption, growth rate, tissue elemental stoichiometry and N excretion by guppies on all treatments. Guppies strongly reduced food intake in the presence of predator cues; however, cue-exposed guppies assimilated nutrients more efficiently than controls. Specifically, cue-exposed guppies strongly increased N retention efficiency while only moderately increasing C efficiency. Consequently, guppies reared with predator cues excreted 39 % less N than control guppies. We suggest that reduced foraging, enhanced nutrient efficiency, and decreased N excretion are adaptive responses to the extrinsic mortality threat posed by guppy predators. The resulting substantial reduction in N excretion by guppies may influence ecosystem function in natural streams by reducing the supply of a limiting nutrient.  相似文献   

15.
Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 ‘average’ spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.  相似文献   

16.
Structural features of habitat are known to affect the density of predators and prey, and it is generally accepted that complexity provides some protection from the environment and predators but may also reduce foraging success. A next step in understanding these interactions is to decouple the impacts of both spatial and trophic ingredients of complexity to explicitly explore the trade-offs between the habitat, its effects on foraging success, and the competition that ensues as predator densities increase. We quantified the accumulation of spiders and their prey in habitat islands with different habitat complexities created in the field using natural plants, plant debris and plastic plant mimics. Spiders were observed at higher densities in the complex habitat structure composed of both live plants and thatch. However, the numerically dominant predator in the system, the wolf spider Pardosa milvina, was observed at high densities in habitat islands containing plastic mimics of plants and thatch. In a laboratory experiment, we examined the interactive effects of conspecific density and habitat on the prey capture of P. milvina. Thatch, with or without vertical plant structure, reduced prey capture, but the plastic fiber did not. Pairwise interactions among spiders reduced prey capture, but this effect was moderated by thatch. Taken together, these experiments highlight the flexibility of one important predator in the food web, where multiple environmental cues intersect to explain the role of habitat complexity in determining generalist predator accumulation.  相似文献   

17.
Akihiko Mougi  Kinya Nishimura 《Oikos》2008,117(11):1732-1740
Destabilization of one predator–one prey systems with an increase in nutrient input has been viewed as a paradox. We report that enrichment can damp population cycles by a food‐web structure that balances inflexible and flexible interaction links (i.e. specialist and generalist predators). We modeled six predator–prey systems involving three or four species in which the predators practice optimal foraging based on prey profitability determined by handling time. In all models, the balance of interaction links simultaneously decreased the amplitude of population oscillations and increased the minimum density with increasing enrichment, leading to a potential theoretical resolution of the paradox of enrichment in non‐equilibrium dynamics. The stabilization mechanism was common to all of the models. Important previous studies on the stability of food webs have also demonstrated that a balance of interaction strengths stabilizes systems, suggesting a general rule of ecosystem stability.  相似文献   

18.
The foraging success of predators depends on how their consumption of prey is affected by prey density under different environmental settings. Here, we measured prey capture rates of drift-feeding juvenile brown trout and European grayling at different prey densities in an artificial stream channel at 5 and 11?°C. Capture rates were lower at 5 than at 11?°C, and the difference was most pronounced at high prey densities. At high prey densities, we also observed that European grayling had higher capture rates than brown trout. Type III functional response curves, i.e. sigmoidal relationships between capture rates and prey densities, fitted the data better than type I (linear) and II (hyperbolic) curves for all four combinations of temperatures and species. These results may explain the dominance of grayling in stream habitats with low water velocities and results such as these may be of use when developing foraging-based food web models of lotic ecosystems that include drift-feeding salmonids.  相似文献   

19.
Quantitative approaches to predator–prey interactions are central to understanding the structure of food webs and their dynamics. Different predatory strategies may influence the occurrence and strength of trophic interactions likely affecting the rates and magnitudes of energy and nutrient transfer between trophic levels and stoichiometry of predator–prey interactions. Here, we used spider–prey interactions as a model system to investigate whether different spider web architectures—orb, tangle, and sheet‐tangle—affect the composition and diet breadth of spiders and whether these, in turn, influence stoichiometric relationships between spiders and their prey. Our results showed that web architecture partially affects the richness and composition of the prey captured by spiders. Tangle‐web spiders were specialists, capturing a restricted subset of the prey community (primarily Diptera), whereas orb and sheet‐tangle web spiders were generalists, capturing a broader range of prey types. We also observed elemental imbalances between spiders and their prey. In general, spiders had higher requirements for both nitrogen (N) and phosphorus (P) than those provided by their prey even after accounting for prey biomass. Larger P imbalances for tangle‐web spiders than for orb and sheet‐tangle web spiders suggest that trophic specialization may impose strong elemental constraints for these predators unless they display behavioral or physiological mechanisms to cope with nutrient limitation. Our findings suggest that integrating quantitative analysis of species interactions with elemental stoichiometry can help to better understand the occurrence of stoichiometric imbalances in predator–prey interactions.  相似文献   

20.
Some species of web building spiders use different capture tactics for different prey types. The main factors influencing the attack behaviour are the ability of the insect to escape, the risks of injury to the spiders and prey size. This study evaluated the effects of size and prey type on prey capture behaviour of the social spider Anelosimus eximius as influenced by the number of spiders attracted by prey movements that did not bite until the immobilization (bystanders) and the number of spiders that contributed to prey immobilization (catchers). We carried out a two‐factor (prey size and type) experiment offering prey belonging to four orders: Diptera, Lepidoptera, Hymenoptera and Orthoptera, in a size gradient within each prey type. Both factors influenced the number of spiders recruited as bystanders, but only prey body size influenced the number of catchers in the subduing process. The possible advantages of the presence of bystanders around the interception site are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号