首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Romero PJ  Romero EA 《Cell calcium》1999,26(3-4):131-137
The effect of cell ageing on Ca2+ entry was studied in this work, using sub-populations of young and old human red cells, separated by stringent percoll density gradients. Additionally, the influence of an osmotic gradient was investigated as a model for shear stress. Ca2+ entry was assessed at 37 degrees C, under conditions where the Ca2+ pump was either inhibited by NaVO3 (0.5-10 mM) or inactivated by ATP depletion. The entry was linear with time up to 1 h. No differences in Ca2+ influx between the two sub-populations were detected in isotonic Na(+)-medium. In contrast, after incubation in anisosmotic media, Ca2+ entry into old cells was significantly higher than into younger cells. In hypotonic Na(+)-medium, the entry into old cells was not affected by La3+ (10 microM) whilst it was partially blocked by Gd3+ at a similar level (half-maximal effect attained with about 1 microM Gd3+). The entry into young cells was only slightly stimulated by these lanthanides at low concentrations (10 microM), regardless of the tonicity of incubation medium. Further increasing Gd3+ levels above 10 microM markedly enhanced Ca2+ entry into both cell types. The selective blockade of Ca2+ influx by low Gd3+ concentrations suggests presence of mechano-sensitive channels, that become preferentially activated in old cells. Activation of these channels during in-vivo microcirculation may help to explain the increased Ca2+ content of senescent cells.  相似文献   

2.
Calcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s. As evidenced by the total wave inhibition either by the block of Ca2+ entry or the depletion of Ca2+ stores by thapsigargin, a specific Ca(2+)-ATPase inhibitor, the [Ca2+]i wave initiation may imply a localized Ca2+ influx linked to a focal auto-regenerative process of Ca2+ release. Using different external Ca2+ and Ca2+ entry blockers concentrations, Mn2+ quenching of fluo-3 and fura-2 fluorescence and inhibitors of InsP3 production, we found evidence that the [Ca2+]i wave progression required, in the presence of basal levels of InsP3, an interplay between Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ influx through channels possibly activated by the [Ca2+]i rise.  相似文献   

3.
The interactions between calmodulin, ATP and Ca2+ on the red cell Ca2+ pump have been studied in membranes stripped of native calmodulin or rebound with purified red cell calmodulin. Calmodulin stimulates the maximal rate of (Ca2+ + Mg2+)-ATPase by 5–10-fold and the rate of Ca2+-dependent phosphorylation by at least 10-fold. In calmodulin-bound membranes ATP activates (Ca2+ + Mg2+)-ATPase along a biphasic concentration curve (Km1 ≈ 1.4 μM, Km2 ≈ 330 μM), but in stripped membranes the curve is essentially hyperbolic (Km ≈ 7 μM). In calmodulin-bound membranes Ca2+ activates (Ca2+ + Mg2+)-ATPase at low concentrations (Km < 0.28 μM) in stripped membranes the apparent Ca2+ affinities are at least 10-fold lower.The results suggest that calmodulin (and perhaps ATP) affect a conformational equilibrium between E2 and E1 forms of the Ca2+ pump protein.  相似文献   

4.
Two modes of inhibition of the Ca2+ pump in red cells by Ca2+   总被引:2,自引:0,他引:2  
Two different and independent modes of inhibition of the Ca2+ pump by Ca2+ can be detected measuring active Ca2+ extrusion from resealed ghosts of human red cells: one requires extracellular and the other requires intracellular Ca2+. Ki for inhibition by extracellular Ca2+ is about 10 mM. Extracellular Mg2+ replaces Ca2+ in inhibiting Ca2+ transport but with an apparent affinity for inhibition about 3-times less than that for Ca2+. Inhibition by external Ca2+ is not affected by Na+ or K+ at both surfaces of the cell membrane, external EGTA, internal Ca2+ or ATP. The apparent affinity for external Ca2+ progressively raises as pH increases. The effects of extracellular Ca2+ and Mg2+ are consistent with the idea that for Ca2+ pumping to proceed, external sites in the pump must be protonated and not occupied by extracellular Ca2+ or Mg2+. Inhibition by intracellular Ca2+ takes place with a Ki of about 1 mM and is independent of external Ca2+. The inhibitory effects of intracellular Ca2+ can be accounted for if Ca2+ and CaATP were competitive inhibitors of the activation of the pump by Mg2+ and MgATP, respectively.  相似文献   

5.
Summary Veratridine opens voltage-dependent Na+ channels in many metazoans. InParamecium, which has voltage-dependent Ca2+ channels and a Ca/K action potential, no such Na+ channels are known. A Ca-inward current is correlated to an intracellular increase in cGMP. The addition of veratridine toParamecium wildtype and to pawn mutant cells, which lack the Ca-inward current, transiently increased intracellular levels of cGMP about sevenfold to 40 pmol/mg protein. A half-maximal effect was obtained with 250 m veratridine. The increase in cGMP was maximal about 15 sec after the addition of veratridine and declined rapidly afterwards. Intracellular cAMP levels were not affected. The effect of veratridine on cGMP was dependent on the presence of extracellular Ca2+. The time dependence and extent of stimulation closely resembled the effects observed after stimulation by Ba2+, which causes the repetitive firing of action potentials, Ca-dependent ciliary reversal, and cGMP formation. The effects of Ba2+ and veratridine were not additive. Wildtype cells and, surprisingly, also pawn mutant cells showed avoiding reactions upon addition of veratridine indicating that it induced a Ca2+ influx into the cilia, which causes ciliary reversal. The potency of veratridine to stimulate cGMP formation was little affected by Na+ in wildtype cells, three pawn mutant strains, and in the cell line fast-2, which is defective in a Ca-dependent Na-inward current. Divalent cations (Ca2+, Mg2+, and Ba2+) inhibited the effects the veratridine similar to metazoan cells. The results indicate that veratridine can open the voltage-operated Ca2+ channels inParamecium wildtype and, most interestingly, in pawn mutant cells. The pawn mutation is suggested to represent a defect in the activation of the Ca2+ channel. This explains the lack of differences in ciliary proteins between wildtype and pawn cells reported earlier.  相似文献   

6.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

7.
H Takemura  H Ohshika 《Life sciences》1999,64(17):1493-1500
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells.  相似文献   

8.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

9.
Upon stimulation with 10(-6) -10(-3) M ATP, A-431 human epidermoidal carcinoma cells incorporated radioactive calcium from their medium in a temperature-dependent manner. The rate of incorporation of 45Ca2+ was rapid for the initial 5 min, but decreased immediately thereafter. The preincubation of cells for 2 h in medium depleted of both Ca2+ and Mg2+ abolished the ATP-dependent 45Ca2+ incorporation, irrespective of whether or not the subsequent incubation medium contained Mg2+ ions. ATP-dependent 45Ca2+ incorporation could be restored by a second preincubation (1 h) in medium containing 1 mM Mg2+, but no Ca2+. The Mg2+ ions in the second preincubation medium could be replaced by Ca2+, Co2+, or Cu2+ for restoration of such activity. Elevation of inositol trisphosphate (InsP3) was observed in cells depleted of either Ca2+ or Mg2+, but not in cells depleted of both ions. A parallel effect was observed in changes in [Ca2+]i. Since the concentration of cytosolic calcium ions does not change by incubation of cells in medium depleted of and (or) restored with calcium ions, we conclude that either calcium or magnesium ions associated with some cellular component(s) are responsible for production of InsP3, which then supposedly mobilizes Ca2+ and provokes 45Ca2+ influx.  相似文献   

10.
P S Liu  L S Kao 《Cell calcium》1990,11(9):573-579
Bovine adrenal chromaffin cells were loaded with Na+ via either acetylcholine receptor-associated ion channels or voltage-sensitive Na+ channels. There were increases in [Ca2+]i, 45Ca2+ uptake and catecholamine secretion in both types of Na(+)-loaded cells relative to control cells in which Na+ loading had been prevented by hexamethonium and tetrodotoxin, respectively. These results show the presence of Na(+)-dependent Ca2+ influx activity in chromaffin cells which is probably mediated by the reverse mode of a Na+/Ca2+ exchanger.  相似文献   

11.
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.  相似文献   

12.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

13.
The presence of five P2X-like genes (p2xA–E) in Dictyostelium suggests that nucleotides other than cAMP may act as extracellular signalling molecules in this model eukaryote. However, p2xA was found to have an exclusively intracellular localisation making it unclear whether Dictyostelium utilise P2 receptors in a manner analogous to vertebrates. Using an apoaequorin expressing strain we show here that Dictyostelium do possess cell surface P2 receptors that facilitate Ca2+ influx in response to extracellular ATP and ADP (EC50 = 7.5 μM and 6.1 μM, respectively). Indicative of P2X receptor activation, responses were rapid reaching peak within 2.91 ± 0.04 s, required extracellular Ca2+, were inhibited by Gd3+, modified by extracellular pH and were not affected by deletion of either the single or iplA genes. Responses also remained unaffected by disruption of p2xA or p2xE showing that these genes are not involved. Cu2+ and Zn2+ inhibited purine-evoked Ca2+ influx with IC50 values of 0.9 and 6.3 μM, respectively. 300 μM Zn2+ completely abolished the initial large rapid rise in intracellular Ca2+ revealing the presence of an additional smaller, slower P2Y-like response. The existence of P2 receptors in Dictyostelium makes this organism a valuable model to explore fundamental aspects of purinergic signalling.  相似文献   

14.
Calcium depletion of the endoplasmic reticulum (ER) induces oligomerisation, puncta formation and translocation of the ER Ca2+ sensor proteins, STIM1 and -2 into plasma membrane (PM)-adjacent regions of the ER, where they activate the Orai1, -2 or -3 proteins present in the opposing PM. These proteins form ion channels through which store-operated Ca2+ influx (SOC) occurs. Calcium ions exert negative feed-back on SOC. Here we examined whether subplasmalemmal mitochondria, which reduce this feed-back by Ca2+ uptake, are located within or out of the high-Ca2+ microdomains (HCMDs) formed between the ER and plasmalemmal Orai1 channels. For this purpose, COS-7 cells were cotransfected with Orai1, STIM1 labelled with YFP or mRFP and the mitochondrially targeted Ca2+ sensitive fluorescent protein inverse-Pericam. Depletion of ER Ca2+ with ATP + thapsigargin (in Ca2+-free medium) induced the appearance of STIM1 puncta in the ≤100 nm wide subplasmalemmal space, as examined with TIRF. Mitochondria were located either in the gaps between STIM1-tagged puncta or in remote, STIM1-free regions. After addition of Ca2+ mitochondrial Ca2+ concentration increased irrespective of the mitochondrion–STIM1 distance. These observations indicate that mitochondria are exposed to Ca2+ diffused laterally from the HCMDs formed between the PM and the subplasmalemmal ER.  相似文献   

15.
Growth factor-induced cell migration underlies various physiological and pathological processes. The mechanisms by which growth factors regulate cell migration are not completely understood. Although intracellular elevation of Ca2+ is known to be critical in cell migration, the source of this Ca2+ elevation and the mechanism by which Ca2+ modulates this process in fibroblast cells are not well defined. Here we show that increase of cellular Ca2+ through Ca2+ influx, rather than Ca2+ release from intracellular stores, is essential for growth factor-induced fibroblast cell migration. Voltage-gated L-type Ca2+ channels, previously known to exist in excitable cells such as neurons and muscle cells, are shown here to be present in fibroblasts as well. Furthermore, these channels are responsible for the Ca2+ influx. L-type Ca2+ channel inhibitors block growth factor-induced Ca2+ influx and fibroblast cell migration. One mechanism by which Ca2+ signals control cell migration is to regulate the contraction of the trailing edge of migrating fibroblasts; this process is controlled by the small GTPase Rho in fast migrating cells such as leukocytes. Downstream of Ca2+, both calmodulin and myosin light chain kinase, but not calcineurin, are involved leading to phosphorylation of the myosin light chain at the trailing end. Thus, trailing edge contraction is critically regulated by Ca2+ influx through L-type Ca2+ channels in growth factor-induced fibroblast cell migration.  相似文献   

16.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

17.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

18.
Ca2+ influx from the extracellular space in nonexcitable cells occurs via receptor-operated and refilling processes. However, they showed different characteristics with respect to the Mn2+ permeability, depletion of intracellular Ca2+ stores, and sensitivity to the K+ ionophore valinomycin in rat pancreatic acinar cells. While Mn2+ did not enter into the cells during the refilling phase, the opposite was true in receptor-operated Ca2+ influx (ROCI) evoked by carbachol (CCh). ROCI occurred in the absence of intracellular Ca2+ release from the stores. Valinomycin abolished the second response of Ca2+ elicited by CCh, whereas it had no effect on ROCI. These observations suggest that receptor-operated Ca2+ channels (ROCCs) and refilling channels may be different in rat pancreatic acinar cells.  相似文献   

19.
Effects of naturally existing rare-earth metals (REMs; atomic numbers, 39, 57-60, 62-71; Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), added as chloride salts, on Ca2+ influx induced by two different stimuli, namely hypoosmotic shock and hydrogen peroxide, were examined in a suspension-cultured transgenic cell line of BY-2 tobacco cells expressing aequorin, a Ca(2+)-sensitive luminescent protein in cytosol. Most REM salts used here showed inhibitory effect against Ca2+ influx. Especially NdCl3, SmCl3, EuCl3, GdCl3 and TbCl3 showed the most robust inhibitory action. In contrast, LuCl3, YbCl3, ErCl3 and YCl3 were shown to be poor inhibitors of Ca2+ influx. Since REMs tested here form a sequential range of ionic radii from 86.1 to 103.2 pm and the optimal range of ionic radii required for blocking the flux of Ca2+ was determined for each stimulus. The hydrogen peroxide-induced Ca2+ influx was optimally blocked by REMs with a broad range of ionic radii (93.8-101 pm) which is slightly smaller than or similar to that of Ca2+ (100 pm), while the hypoosmotically induced flux of Ca2+ was inhibited optimally by few REMs with a narrower range of relatively smaller ionic radii around that of Gd3+ (93.8 pm) a well known inhibitor of stretch-activated channels. Possible applications of such series of channel blockers in elucidation of plant signal transduction pathways are encouraged.  相似文献   

20.
The pre-steady-state kinetics of phosphorylation of the Ca2+-ATPase by ATP was studied at 37 degrees C and in intact red cell membranes to approach physiological conditions. ATP and Ca2+ activate with K0.5 of 4.9 and 26.4 microM, respectively. Preincubation with Ca2+ did not change the K0.5 for ATP. Preincubation with ATP did not alter the initial velocity of phosphorylation suggesting that binding of ATP was not rate-limiting. Mg2+ added at the start of the reaction increased the initial rate of phosphorylation from 4 to 8 pmol/mg/s. With 30 microM Ca2+, the K0.5 for Mg2+ was 60 microM. Mg2+ and Ca2+ added together beforehand accelerated phosphorylation to 70 pmol/mg/s. Phosphorylation of calmodulin-bound membranes was the fastest (280 pmol/mg/s), and its time course showed a neat overshoot before steady state. The results suggest that either preincubation with Ca2+ plus Mg2+ or calmodulin accelerated phosphorylation shifting toward E1 the equilibrium between the E1 and E2 conformers of the enzyme. K+ had no effect on the initial rate of phosphorylation and lowered by 40% the steady-state level of phosphoenzyme in the absence of Mg2+. Phosphorylation is not rate-limiting for the overall reaction since its initial rate was always higher than ATPase activity. In the absence of K+, the turnover of the phosphoenzyme was 2000 min-1, which is close to the values for other transport ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号