首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
以前期里氏木霉RNA-seq中发现的7个糖苷水解酶基因为对象,分析其不同条件下的表达特性,以期为寻找新的纤维素降解功能酶提供证据。运用生物信息学方法,分析了7个基因可能的编码产物和结构特征。以不同的产纤维素酶菌株(QM 9414、RUT C30)为材料,采用实时荧光定量PCR,对7个糖苷水解酶基因(编号4–10)在各种碳源条件下转录情况与主要的3个纤维素酶基因cbh1,cbh2,egl1(编号1–3)进行了比较分析。信息学分析表明,7个基因编码蛋白分属于GH47(4号、5号),GH92(6–8号),GH16(9号),GH31(10号)糖苷水解酶家族,具有典型的信号肽序列。cbh1,cbh2,egl1基因在纤维素酶诱导条件下,转录水平均表现显著的增加,上调倍数以QM 9414菌株表现的最高。QM 9414菌株中,cbh1,cbh2,egl1基因在纤维素条件下的上调倍数显著高于乳糖,3个基因在RUT C30菌株中的转录水平则显示乳糖条件下上调幅度更大。7个糖苷水解酶基因也存在类似的情况,而且编码α-甘露糖苷酶和内切β-葡聚糖酶的8号、9号基因上调倍数在纤维素酶诱导条件下仅次于纤维素酶基因,而以甘油为碳源条件下,8号、9号基因上调倍数高于纤维素酶基因。4号基因在上述碳源条件下,转录水平变化不大。结果表明:4号基因可能是组成型表达。基因5、6、7、8、9、10的表达呈现明显的菌株和碳源依赖性,且在纤维素酶诱导条件下基本上是和3个纤维素酶基因共转录的。  相似文献   

4.
This paper describes the characterization of an intracellular beta-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific beta-glucosidase, having no beta-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this beta-glucosidase.  相似文献   

5.
Basic features of regulation of expression of the genes encoding the cellulases of the filamentous fungus Trichoderma reesei QM9414, the genes cbh1 and cbh2 encoding cellobiohydrolases and the genes egl1, egl2 and egl5 encoding endoglucanases, were studied at the mRNA level. The cellulase genes were coordinately expressed under all conditions studied, with the steady-state mRNA levels of cbh1 being the highest. Solka floc cellulose and the disaccharide sophorose induced expression to almost the same level. Moderate expression was observed when cellobiose or lactose was used as the carbon source. It was found that glycerol and sorbitol do not promote expression but, unlike glucose, do not inhibit it either, because the addition of 1 to 2 mM sophorose to glycerol or sorbitol cultures provokes high cellulase expression levels. These carbon sources thus provide a useful means to study cellulase regulation without significantly affecting the growth of the fungus. RNA slot blot experiments showed that no expression could be observed on glucose-containing medium and that high glucose levels abolish the inducing effect of sophorose. The results clearly show that distinct and clear-cut mechanisms of induction and glucose repression regulate cellulase expression in an actively growing fungus. However, derepression of cellulase expression occurs without apparent addition of an inducer once glucose has been depleted from the medium. This expression seems not to arise simply from starvation, since the lack of carbon or nitrogen as such is not sufficient to trigger significant expression.  相似文献   

6.
木质纤维素乙醇具有替代化石燃料的潜力,其生产过程包括生物质预处理、纤维素酶生产、水解和发酵等多个步骤。将纤维素酶生产、水解和发酵组合在一起的统合生物加工过程(consolidated bioprocessing,CBP)由于能降低水解和发酵成本而具有应用于纤维素乙醇生产的潜力,该技术的关键是构建能有效降解纤维素的工程菌株,而构建表达纤维素酶的酿酒酵母即是其中一种选择。采用鸡尾酒多拷贝δ整合的策略将7种纤维素酶基因(Trichoderma reesei cbh1、cbh2和egl2,Aspergillus aculeatus cbh1、egl1和bgl1)表达盒整合至酿酒酵母W303-1A染色体上,经4轮整合筛选得到菌株LA1、LA2、LA3和LA4。对这4个菌株进行纤维素酶活性测定,结果表明从LA1到LA3各种纤维素酶活性呈递增趋势,而LA4的酶活性与LA3的酶活水平相当。对菌株LA3进行酸碱预处理玉米芯料的发酵评价,结果表明:①在外加商品化纤维素酶的情况下,与对照菌株W303-1A和AADY相比,LA3能有效利用纤维素料发酵产醇;②与分步整合的菌株W3相比,发酵性能更优;③培养基中的营养成分影响菌株发酵性能。这些结果表明,鸡尾酒δ整合是一种有效的构建酿酒酵母CBP菌株的方法。  相似文献   

7.
8.
The chromosomal cellobiohydrolase 1 locus (cbh1) of the biotechnologically important filamentous fungus Trichoderma reesei was replaced in a single-step procedure by an expression cassette containing an endoglucanase I cDNA (egl1) under control of the cbh1 promoter. CBHI protein was missing from 37–63% of the transformants, showing that targeting of the linear expression cassette to the cbh1 locus was efficient. Studies of expression of the intact cbh1-egl1 cassette at the cbh1 locus revealed that egl1 cDNA is expressed from the cbh1 promoter as efficiently as cbh1 itself. Furthermore, a strain carrying two copies of the cbh1-egl1 expression cassette produced twice as much EG I as the amount of CBHI, the major cellulase protein, produced by the host strain. The level of egl1-specific mRNA in the single-copy transformant was about 10-fold higher than that found in the non transformed host strain, indicating that the cbh1 promoter is about 10 times stronger than the egl1 promoter. The 10-fold increase in the secreted EG I protein, measured with an enzyme-linked immunosorbent assay (ELISA), correlated well with the increase in egl1-specific mRNA.  相似文献   

9.
Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2, slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2, gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.  相似文献   

10.
Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2, slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2, gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.  相似文献   

11.
The chromosomal cellobiohydrolase 1 locus (cbh1) of the biotechnologically important filamentous fungus Trichoderma reesei was replaced in a single-step procedure by an expression cassette containing an endoglucanase I cDNA (egl1) under control of the cbh1 promoter. CBHI protein was missing from 37–63% of the transformants, showing that targeting of the linear expression cassette to the cbh1 locus was efficient. Studies of expression of the intact cbh1-egl1 cassette at the cbh1 locus revealed that egl1 cDNA is expressed from the cbh1 promoter as efficiently as cbh1 itself. Furthermore, a strain carrying two copies of the cbh1-egl1 expression cassette produced twice as much EG I as the amount of CBHI, the major cellulase protein, produced by the host strain. The level of egl1-specific mRNA in the single-copy transformant was about 10-fold higher than that found in the non transformed host strain, indicating that the cbh1 promoter is about 10 times stronger than the egl1 promoter. The 10-fold increase in the secreted EG I protein, measured with an enzyme-linked immunosorbent assay (ELISA), correlated well with the increase in egl1-specific mRNA.  相似文献   

12.
In the search for suitable cellulase combinations for industrial biofinishing of cotton, five different types of Trichoderma reesei strains were constructed for elevated cellobiohydrolase production: CBHI overproducers with and without endoglucanase I (EGI), CBHII overproducers with and without endoglucanase II (EGII) and strains overproducing both CBHI and CBHII without the major endoglucanases I and II. One additional copy of cbh1 gene increased production of CBHI protein 1.3-fold, and two copies 1.5-fold according to ELISA (enzyme-linked immunosorbent assay). The level of total secreted proteins was increased in CBHI transformants as compared to the host strain. One copy of the cbh2 expression cassette in which the cbh2 was expressed from the cbh1 promoter increased production of CBHII protein three- to four-fold when compared to the host strain. T. reesei strains producing elevated amounts of both CBHI and CBHII without EGI and EGII were constructed by replacing the egl1 locus with the coding region of the cbh1 gene and the egl2 locus with the coding region of cbh2. The cbh1 was expressed from its own promoter and the cbh2 gene using either the cbh1 or cbh2 promoter. Production of CBHI by the CBH-transformants was increased up to 1.6-fold and production of CBHII up to 3.4-fold as compared with the host strain. Approximately similar amounts of CBHII protein were produced by using cbh1 or cbh2 promoters. When the enzyme preparation with elevated CBHII content was used in biofinishing of cotton, better depilling and visual appearance were achieved than with the wild type preparation; however, the improvement was not as pronounced as with preparations with elevated levels of endoglucanases (EG).  相似文献   

13.
长梗木霉纤维素酶基因的克隆及序列分析   总被引:2,自引:0,他引:2  
石贤爱  刘月  陈飞  杨锦 《微生物学通报》2010,37(5):0671-0676
从富含纤维素环境筛选获得一株纤维素降解菌株FU05,通过形态学特征及ITS序列分析确定其为长梗木霉(Trichoderma longibrachiatum)。PCR扩增获得该菌株的bgl2、cbh2和eg1。序列分析表明,这3种纤维素酶基因与GenBank上其他木霉同种纤维素酶基因具有较高同源性:bgl2基因与里氏木霉bgl2基因(AB003110)同源性达91%;cbh2基因与康宁木霉cbh2基因(DQ504304)同源性达99%;eg1基因与长梗木霉eg1基因(X60652)同源性达95%。3种纤维素酶基因编码的相应氨基酸序列与其他木霉纤维素酶的氨基酸序列相似性也非常高。对上述纤维素酶基因编码的相应蛋白进行PROSITE motif search,对其N端糖基化位点、纤维素结合区、糖基水解酶家族特征结构区等进行了定位。  相似文献   

14.
15.
Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals.  相似文献   

16.
17.
Cellulase induction by beta-glucodisaccharides was investigated by using non-cellulase-induced mycelia of Penicillium purpurogenum P-26, a highly-cellulase-producing fungus. Gentiobiose induced significant amounts of cellulase compared with cellobiose when nojirimycin was added to the induction medium to inhibit extracellular beta-glucosidase activity. Thiogentiobiose (6-S-beta-d-glucopyranosyl-6-thio-d-glucose), a sulfur-containing analog of gentiobiose, was more effective for cellulase induction than gentiobiose even in the absence of nojirimycin. Thiogentiobiose appeared to be a gratuitous inducer since it was not metabolized during cellulase induction. Gentiobiose was formed from cellobiose by the intracellular beta-glucosidase of P. purpurogenum. These findings indicate that gentiobiose is an active inducer of cellulase for this fungus and may possibly be formed by intracellular beta-glucosidase from cellobiose.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号