首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Respiration and N2-fixation (acetylene reduction) ofAzotobacter vinelandii have been studied at a variety of soil water potentials. Both processes were strictly linked and strongly reduced at water potentials between –0.6 and –1.3 MPa. Complete inhibition occurred below –2.1MPa. Osmotic potentials in soil compared to matric potentials of the same value were less inhibitory to respiration and acetylene reduction by Azotobacter. The N2-fixing efficiency (mg N/g glucose) was not influenced by water potentials ranging from –0.1 to –2.1 MPa.  相似文献   

2.
Seedlings of loblolly pine (Pinus taeda L.) were grown under varying conditions of soil nitrogen and atmospheric carbon dioxide availability to investigate the interactive effects of these resources on the energetic requirements for leaf growth. Increasing the ambient CO2 partial pressure from 35 to 65 Pa increased seedling growth only when soil nitrogen was high. Biomass increased by 55% and photosynthesis increased by 13% after 100 days of CO2 enrichment. Leaves from seedlings grown in high soil nitrogen were 7.0% more expensive on a g glucose g–1 dry mass basis to produce than those grown in low nitrogen, while elevated CO2 decreased leaf cost by 3.5%. Nitrogen and CO2 availability had an interactive effect on leaf construction cost expressed on an area basis, reflecting source-sink interactions. When both resources were abundant, leaf construction cost on an area basis was relatively high (81.8±3.0 g glucose m–2) compared to leaves from high nitrogen, low CO2 seedlings (56.3±3.0 g glucose m–2) and low nitrogen, low CO2 seedlings (67.1±2.7 g glucose m–2). Leaf construction cost appears to respond to alterations in the utilization of photoassimilates mediated by resource availability.  相似文献   

3.
Nitrogen fixation in excised root nodules of 2-year-old, postfireCeanothus tomentosus andC. leucodermis seedlings was measured over an 8-month period using the acetylene reduction method. High levels of NO3–N and NH4–N present in postfire soils were limited to the upper 10 cm and did not inhibit nodulation in these deeper-rooting seedlings. Decreases in acetylene reduction activity occurred with decreased soil moisture and increased soil temperature. Nitrogen gains from these two Ceanothus shrub seedlings totalled 1.6 kg N ha–1 yr–1.  相似文献   

4.
Eucalyptus camaldulensis Dehnh. seedlings inoculated with Pisolithus tinctorius (Pers.) Coker & Couch and Thelephora terrestris Ehrl. per Fr. were grown in well watered soil (s –0.03 MPa) or subjected to a long-term soil water stress of up to –1.0 MPa over 13-week period in a glasshouse. After 13 weeks, all seedling containers were watered to field capacity and then water was withheld from the E. camaldulensis seedlings to induce a short-term drought. Diurnal measurements of seedling photosynthesis rate (A), leaf stomatal conductance (g) and leaf water potential (p) were completed before, during, and after the short term drought. Although they were growing in an equal soil volume, photosynthesis rate (A), leaf stomatal conductance and leaf water potential (p) of larger seedlings with P. tinctorius ectomycorrhizae were similar to those of smaller seedlings colonized with T. terrestris during the short-term drought period. Seedlings inoculated with Pisolithus tinctorius maintained higher photosynthesis rates over the course of the short-term drought. Thus, P. tinctorius ectomycorrhizae appear to be more efficient than those of T. terrestris in assisting seedlings to maintain gas exchange and photosynthesis under limited soil moisture conditions.  相似文献   

5.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

6.
We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH 4 + , and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (mol CO2 plant–1 s–1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (mol CO2 g root–1 s–1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 mol g–1 s–1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 mol g–1 s–1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species.  相似文献   

7.
Summary Seeds of Gliricidia sepium (Jacq.) Walp., a tree native to seasonal tropical forests of Central America, were inoculated with N-fixing Rhizobium bacteria and grown in growth chambers for 71 days to investigate interactive effects of atmospheric CO2 and plant N status on early seedling growth, nodulation, and N accretion. Seedlings were grown with CO2 partial pressures of 350 and 650 bar (current ambient and a predicted partial pressure of the mid-21st century) and with plus N or minus N nutrient solutions to control soil N status. Of particular interest was seedling response to CO2 when grown without available soil N, a condition in which seedlings initially experienced severe N deficiency because bacterial N-fixation was the sole source of N. Biomass of leaves, stems, and roots increased significantly with CO2 enrichment (by 32%, 15% and 26%, respectively) provided seedlings were supplied with N fertilizer. Leaf biomass of N-deficient seedlings was increased 50% by CO2 enrichment but there was little indication that photosynthate translocation from leaves to roots or that plant N (fixed by Rhizobium) was altered by elevated CO2. In seedlings supplied with soil N, elevated CO2 increased average nodule weight, total nodule weight per plant, and the amount of leaf nitrogen provided by N-fixation (as indicated by leaf 15N). While CO2 enrichment reduced the N concentration of some plant tissues, whole plant N accretion increased. Results support the contention that increasing atmospheric CO2 partial pressures will enhance productivity and N-fixing activity of N-fixing tree seedlings, but that the magnitude of early seedling response to CO2 will depend greatly on plant and soil nutrient status.  相似文献   

8.
The effect of water deficit on nodulation, N2 fixation, photosynthesis, and total soluble sugars and leghemoglobin in nodules was investigated in cowpea and groundnut. Nitrogenase activity completely ceased in cowpea with a decrease in leaf water potential ( leaf) from –0.4 MPa to –0.9 MPa, while in groundnut it continued down to –1.7 MPa. With increasing water stress, the acetylene reduction activity (ARA) declined very sharply in cowpea, but ARA gradually decreased in groundnut. Even with mild water stress ( leaf of 0.2 MPa), nodule fresh weight declined 50% in cowpea partly due to a severe nodule shedding whereas nodule fresh weight declined in groundnut only when leaf decreased by 1.0 MPa. No nodule shedding was noticed even at a higher stress level in groundnut. Photosynthesis and stomatal conductance were also more stable in groundnut than in cowpea under water stress. There was a sharp increase in total soluble sugars and leghemoglobin in the nodules of groundut with water stress, but no definite trend could be found in cowpea.  相似文献   

9.
O'Hara  G. W.  Hartzook  A.  Bell  R. W.  Loneragan  J. F. 《Plant and Soil》1993,155(1):333-336
The effects of Bradyrhizobium (strains NC92 and TAL1000) and Fe supply on nodulation and nitrogen fixation of two peanut (Arachis hypogaea L.) cultivars (cv. Tainan 9 (Fe inefficient) and cv. 71-234 (Fe efficient)) grown under Fe deficient conditions (imposed by adding 40% CaCO3 to a ferruginous soil) were examined in a glasshouse experiment. When inoculated with TAL1000 without Fe, both cultivars had low shoot N concentration, very low nodule numbers and weight and no measurable acetylene reduction activity per plant. Inoculation with NC92 without Fe increased all these parameters substantially; addition of Fe with NC92 had no further effect on N concentration but doubled nodule number, weight and acetylene reduction activity per plant. Addition of Fe with TAL1000 increased all parameters to the same level as Fe+NC92, indicating that the poorer nodulation and N2 fixation of TAL1000 in the absence of Fe, resulted from a poorer ability in getting its Fe supply from the alkaline soil. The nodules from all treatments with measurable activity had the same specific acetylene reduction activity suggesting that Fe deficiency limited nodule development.The results support previous suggestions that Bradyrhizobium strains differ greatly in their ability to obtain Fe from soils and that selection of Fe efficient strains could complement plant breeding in the selection of legume crops for Fe deficient soils.  相似文献   

10.
Summary Conditions and techniques for achieving good nodulation ofPhaseolus vulgaris L. in continuously aerated solution were developed from greenhouse experiments.If nodules had been established, their growth and activity and the growth of the plant were at least as good in solution culture as in gravel culture. Nodule formation was observed within 10 days of inoculation in small volumes of solution culture (1 liter). In large volumes (19 liters), similarly prompt nodulation occurred only if the plants were inoculated before or immediately after the seedlings were transferred to the solution from gravel or vermiculite; and the nodules were restricted to the roots that had been present at the time of transfer. Delayed inoculation, 2 days after transfer to large volume solutions, led to sparse nodulation observed only after 3 weeks. Delay or inhibition of nodulation in large volumes of solution could not be explained by failute of bacteria to colonize roots or by sparsity of root hairs.Nodule initiation in solution culture was severely inhibited at pH below 5.4. An additional problem in growing N2-dependent bean in solution culture was the buildup of Cl to toxic levels in the plant in nitrate-free media, even at solution concentrations as low as 0.4 mM Cl. Daily addition of 0.5 to 1.0 mg N per plant delayed nodule growth and activity slightly, but increased plant growth and alleviated the severe N-deficiency that otherwise developed before the onset of N2-fixation.  相似文献   

11.
Water use and yield of tomatoes under limited water and excess boron   总被引:1,自引:0,他引:1  
Ben-Gal  Alon  Shani  Uri 《Plant and Soil》2003,256(1):179-186
The role of tripartite associations among Frankia, Alpova diplophloeus (an ectomycorrhizal fungus) and Alnus tenuifolia in growth, nitrogen fixation, ectomycorrhizal formation, and mineral acquisition of A. tenuifolia was investigated. Seedlings of A. tenuifolia were planted in pots containing a mixture of ground basalt–perlite, or perlite alone, which served as the control. The seedlings were inoculated with Frankia isolated from root nodules of alder, followed by spores of A. diplophloeus and grown for 5 months in a greenhouse. The seedlings grown in the pots with a mixture of ground basalt–perlite after dual inoculation with Frankia and A. diplophloeus had the heaviest shoots and root nodules in dry weight, and showed the greatest nitrogen-fixing ability measured by acetylene reduction. Ectomycorrhizae formed with A. diplophloeus increased when this fungus was inoculated together with Frankia. The mineral composition (P, K, Ca, Fe, Mg, Mn, Na, Si and Al) in the seedlings was also determined. The results of these experiments showed that the tripartite associations could improve the growth, nitrogen fixation and mineral acquisition (rock solubilization) of A. tenuifolia.  相似文献   

12.
Gibbons  J.M.  Newbery  D.M. 《Plant Ecology》2003,164(1):1-18
The water relations of two tree species in the Euphorbiaceae werecompared to test in part a hypothesis that the forest understorey plays anintegral role in drought response. At Danum, Sabah, the relatively commonspecies Dimorphocalyx muricatus is associated with ridgeswhilst another species, Mallotus wrayi, occurs widely bothon ridges and lower slopes. Sets of subplots within two 4 -hapermanent plots in this lowland dipterocarp rain forest, were positioned onridges and lower slopes. Soil water potentials were recorded in1995–1997,and leaf water potentials were measured on six occasions. Soil water potentialson the ridges (–0.047 MPa) were significantly lower than onthe lower slopes (–0.012 MPa), but during the driest periodin May 1997 they fell to similarly low levels on both sites (–0.53MPa). A weighted 40-day accumulated rainfall index was developedtomodel the soil water potentials. At dry times, D.muricatus(ridge) had significantly higher pre-dawn (–0.21 v.–0.57 MPa) and mid-day (–0.59 v.–1.77 MPa) leaf water potentials than M.wrayi (mean of ridge and lower slope). Leaf osmotic potentials ofM. wrayi on the ridges were lower (–1.63MPa) than on lower slopes (–1.09 MPa), withthose for D. muricatus being intermediate (–1.29MPa): both species adjusted osmotically between wet and dry times.D. muricatus trees were more deeply rooted thanM. wrayi trees (97 v. 70cm). M. wrayi trees had greaterlateral root cross-sectional areas than D. muricatus treesalthough a greater proportion of this sectional area for D.muricatus was further down the soil profile. D.muricatus appeared to maintain relatively high water potentialsduring dry periods because of its access to deeper water supplies and thus itlargely avoided drought effects, but M. wrayi seemed to bemore affected yet tolerant of drought and was more plastic in its response. Theinteraction between water availability and topography determines these species'distributions and provides insights into how rain forests can withstandoccasional strong droughts.  相似文献   

13.
Soil solarization is a preplanting technique used in hot climates to control weeds and soilborne pathogens consisting of mulching the soil surface with polyethylene sheets. The increase in temperature associated with solarized soil could affect nitrogen availability for grain legume crops through effects on nitrogen fixing soil microorganisms or other mechanisms. To examine the effects of solarization on natural root nodulation and nitrogen accumulation and partitioning in the plant, two solarization field experiments were carried out over two planting seasons, involving genotypes of both faba bean (Vicia faba) and chickpea (Cicer arietinum). The effect of sowing date was also studied in the first season. Solarization increased the maximum soil temperature by 9–10 °C in the first, and by 13–15 °C in the second season. At 5 cm below the solarized soil surface, a temperature of over 46 °C prevailed for 146 and 280 h over the two respective seasons, while this temperature was not attained in unmulched soil. Solarization delayed the initiation of nodulation and consistently reduced the nodule number per host plant, but generated an approximate doubling of mean nodule weight. The total nodule mass per plant was not affected by the treatment in the first season, but was reduced in the second season. Solarization significantly increased the concentrations of NO3 -N, Na+, Zn2+, Ca2+ and K+ in the soil extract, and the total nitrogen accumulated in the whole plant. This latter increase was due to both higher plant growth and a greater plant nitrogen concentration. The increased nitrogen level in the plant was not uniform with respect to plant component, varying from 57% in the roots to 198% in the pods and seeds. The plants grown in non-solarized soil accumulated about 31% of their total N content in the shoots of the parasitic weed Orobanche crenata. Solarization dramatically improved grain yield by 300–900% in both seasons and in all genotypes studied, due to increased N availability in soil, N accumulation in plants, improved plant growth, and complete control of the parasite weed O. crenata. On the basis of these beneficial effects, soil solarization, which avoids site contamination and is suited to organic farming, should be a good opportunity in Mediterranean areas where the level and stability of grain yields are low, and the infestation of O. crenata is high.  相似文献   

14.
J. Taylor  A. S. Ball 《Plant and Soil》1994,162(2):315-318
The biodegradability of aerial material from a C4 plant, sorghum grown under ambient (345 µmol mol–1) and elevated (700 µmol mol–1) atmospheric CO2 concentrations were compared by measuring soil respiratory activity. Initial daily respiratory activity (measured over 10 h per day) increased four fold from 110 to 440 cm3 CO2 100g dry weight soil–1 in soils amended with sorghum grown under either elevated or ambient CO2. Although soil respiratory activity decreased over the following 30 days, respiration remained significantly higher (t-test;p>0.05) in soils amended with sorghum grown under elevated CO2 concentrations. Analysis of the plant material revealed no significant differences in C:N ratios between sorghum grown under elevated or ambient CO2. The reason for the differences in soil respiratory activity have yet to be elucidated. However if this trend is repeated in natural ecosystems, this may have important implications for C and N cycling.  相似文献   

15.
An experiment was conducted under greenhouse conditions to evaluate the effect of mineral nitrogen on N2 fixation of two cultivars of Phaseolus vulgaris L., Puebla 152 and Negro Argel. Nitrogen application was 0, 2.5, 12.5 and 25 mg N Kg–1 of a vermiculite-sand-mixture at planting time. Shoot and root growth were elevated by nitrogen application at all growth stages. During vegetative growth (V 5) nodule dry weight and nitrogenase activity (acetylene reducing activity) per plant were reduced by nitrogen supply in both cultivars, but less in Negro Argel than in Puebla 152. At later stages nodulation in nitrogen-treated Puebla 152 did not differ from that in non-treated plants, whereas increased nodule number was found in Negro Argel at high nitrogen levels. The influence of mineral N on the total amount of nitrogen fixed in the two bean cultivars was only slightly different.  相似文献   

16.
We investigated the potential links between stomatal control of transpiration and the risk of embolism in root and shoot xylem of seedlings of three Mediterranean conifers (Cupressus sempervirens, Pinus halepensis and P. nigra) grown in a greenhouse under semi-controlled conditions. We measured the intrinsic vulnerability to embolism in roots and current year shoots by the air injection method. Root and shoot segments were subjected to increasing pressures, and the induced loss of hydraulic conductivity recorded. The three species displayed very different vulnerabilities in shoots, with P. nigra being much more vulnerable than P. halepensis and C. sempervirens. Roots were distinctly more vulnerable than shoots in C. sempervirens and P. halepensis (50% loss of conductivity induced at 3.0 MPa and 1.7 MPa higher xylem water potential in roots vs shoots). In P. nigra, no significant difference of vulnerability between shoots and roots was found. Seedlings were subjected to soil drought, and stomatal conductance, twig hydraulic conductivity and needle water potential were measured. The water potential resulting in almost complete stomatal closure (90%) was very close to the threshold water potential inducing loss of conductivity (10%) in twigs in P nigra, resulting in a very narrow safety margin between stomatal closure and embolism induction. The safety margin was larger in P. halepensis and greatest in C. sempervirens. Unexpectedly, this water potential threshold produced a 30–50% loss of conductivity in 3–5 mm diameter roots, depending on the species. The implications of this finding are discussed.  相似文献   

17.
Seedlings of Eucalyptus regnans (mountain ash) grow poorly in undried forest soil, where they develop purple coloration in the foliage, but their growth is markedly improved when forest soil has been air dried. Whether this growth promotion is purely due to improved nutrient status of the soil, as a result of air drying, was investigated. In several pot experiments, E. regnans seedlings were grown (i) in air-dried and undried forest soil with addition of different levels of complete fertiliser, (ii) in air-dried or undried soil diluted to different extents with sand, or (iii) in undried soil mixed with different amounts of air-dried soil. Seedling dry weight, P content and incidence of ectomycorrhizal root tips were determined.In all experiments, the dry weights of seedlings were 3–6 times greater in 100% air-dried soil than in 100% undried soil. Fertiliser application resulted in a significant increase in dry weight of seedlings in both air-dried and undried soil, but the dry weights in air-dried soil were always significantly greater than those in undried soil at the same level of fertiliser application. Even at the highest level of fertiliser application, the growth difference between seedlings in air-dried and undried soil remained. When air-dried soil was diluted with sand, there was a significant reduction in seedling dry weight only when soil was diluted to 20% or less (air-dried soil:total mix). Conversly, when air-dried soil was mixed with undried soil, there was a proportional decrease in seedling dry weight with increasing amounts of undried soil. In all experiments, the dominant ectomycorrhizal morphotypes in 100% air-dried soil were different from those in undried soil. Fertilisation and dilution of air-dried and undried soil did not result in a reduction in the overall incidence of ectomycorrhizal root tips, although the frequency of occurrence of different ectomycorrhizal morphotypes was affected.It is concluded that the growth difference between seedlings in air-dried and undried forest soils is not due solely to differences in the direct availability of nutrients in the soils, and different ectomycorrhizae may indirectly affect nutrient availability to the plant.  相似文献   

18.
Summary Water relations of the root hemiparasite Olax phyllanthi were compared with those of its major species of hosts in natural habitat in coastal heath near Denmark, SW Australia. Leaf water potentials of Olax during winter were 0.4 to 1.4 MPa lower (more negative) than those of all (29) non parasitic host species examined. During the dry summer months (January to March), shallow-rooted hosts developed water potentials up to 3 MPa lower than those of Olax, and were accordingly rated as no longer accessible as a source of water to the hemiparasite. By contrast, deep-rooted hosts, with access to the water table, showed water potentials less negative than Olax, and haustorial contacts retained with these apparently enabled continued extraction of water and nutrients throughout the summer. Three other species of root hemiparasites parasitized by Olax, but not themselves parasitizing Olax, showed leaf water potentials throughout the year very close to, and mostly slightly more negative than those of Olax. Nocturnal measurements of leaf water potential in winter (July and August) in soil at field capacity (water potential –0.006 MPa) showed maintenance of a 0.5–0.8 MPa potential difference between Olax and a range of common host species. By dawn most hosts had equilibrated with the water potential of the soil, whereas both exposed and bagged Olax plants recorded potentials of –0.8 MPa. Daytime rates of transpiration and photosynthesis of Olax were less than those of a range of common hosts, but water use efficiencies were not consistently different between hemiparasite and hosts. This was reflected in almost identical mean values for carbon isotope ratio (13C/12C) between Olax (mean value –27.0) and thirteen frequently exploited hosts ( value –27.1). The results are discussed in relation to published information on other angiosperm hemiparasites.  相似文献   

19.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   

20.
Changes in land management and reductions in fire frequency have contributed to increased cover of woody species in grasslands worldwide. These shifts in plant community composition have the potential to alter ecosystem function, particularly through changes in soil processes and properties. In semi-arid grasslands, the invasion of shrubs and trees is often accompanied by increases in soil resources and more rapid N and C cycling. We assessed the effects of shrub encroachment in a mesic grassland in Kansas (USA) on soil CO2 flux, extractable inorganic N, and N mineralization beneath shrub communities (Cornus drummondii) and surrounding undisturbed grassland sites. In this study, a shift in plant community composition from grassland to shrubland resulted in a 16% decrease in annual soil CO2 flux(4.78 kg CO2 m–2 year–1 for shrub dominated sites versus 5.84 kg CO2 m–2 year–1 for grassland sites) with no differences in total soil C or N or inorganic N. There was considerable variability in N mineralization rates within sites, which resulted in no overall difference in cumulative N mineralized during this study (4.09 g N m–2 for grassland sites and 3.03 g N m–2 for shrub islands). These results indicate that shrub encroachment into mesic grasslands does not significantly alter N availability (at least initially), but does alter C cycling by decreasing soil CO2 flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号