首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis   总被引:7,自引:0,他引:7  
MCP-1, which signals via the CC chemokine receptor 2 (CCR2), is induced in lung fibrosis that is accompanied by mononuclear cell recruitment and activation of lung fibroblasts. To evaluate the role of CCR2 in lung fibrosis, CCR2 knockout (ko) mice were used in a model of bleomycin-induced lung fibrosis. Wild type (wt) and ko mice were injected endotracheally with bleomycin to induce lung injury and fibrosis, and then analyzed for degree of lung fibrosis and cytokine expression. The results showed significantly reduced fibrosis in ko mice as evidenced by decreased lung type I collagen gene expression and hydroxyproline content relative to those in wt mice. Lung TNF-alpha and TGF-beta1 expression was significantly lower in ko vs. wt mice, while MCP-1 expression was unaffected. Interestingly, lung alpha-smooth muscle actin (alpha-SMA) expression, a marker for myofibroblast differentiation, was also decreased in ko mice, which was confirmed by analysis of isolated lung fibroblasts. Fibroblasts from ko mice exhibited decreased responsiveness to TGF-beta1 induced alpha-SMA expression, which was associated with reduced expression of TGF-beta receptor II (TbetaRII) and Smad3. These findings suggest that CCR2 signaling plays a key role in bleomycin-induced pulmonary fibrosis by regulating fibrogenic cytokine expression and fibroblast responsiveness to TGF-beta.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.  相似文献   

3.
Pulmonary fibrosis (PF) is a disease that is characterized by abnormal epithelial-mesenchymal transition (EMT) and persistent inflammatory injury, with high mortality and poor prognosis, but the current therapies are accompanied by certain adverse side effects. In this study, we investigated the role of galangin (GA), an anti-inflammatory and anti-tumoral phytochemical extracted from galangal, in preventing and curing bleomycin (BLM)-induced pulmonary fibrosis and the underlying mechanism. Histopathological staining confirmed that GA dramatically moderated bleomycin-induced pulmonary fibrosis in mice. Compared with the vehicle treatment, GA treatment inhibited the expression of vimentin and increased the expression of E-cadherin. The expression of α-Smooth muscle actin (α-SMA), which is a myofibroblast marker, was also suppressed. In addition, GA diminished the increase in the numbers of CD4+CD69+ and CD8+CD69+ T cells and dendritic cells induced by bleomycin, and reduced the residence of inflammatory cells in the lung tissues. Notably, GA inhibited the TGF-β1-induced EMT and fibroblast differentiation in vitro, which further confirmed the potential protective effect of GA on pulmonary fibrosis. Taken together, our results suggest that GA exerts a beneficial effect on bleomycin-induced pulmonary fibrosis by attenuating EMT and inflammatory damage and may have prevent potential of pulmonary fibrosis.  相似文献   

4.
The chemokine receptor CXCR4, which binds the chemokine stromal cell-derived factor 1, has been reported to be involved in the chemotaxis of inflammatory cells. In addition, AMD3100, an antagonist of CXCR4, has been reported to be an attractive drug candidate for therapeutic intervention in several disorders in which CXCR4 is critically involved. However, little is known about the therapeutic value of AMD3100 in the treatment of pulmonary fibrosis. In this study, we examined the effects of AMD3100 on a murine bleomycin-induced pulmonary fibrosis model. Concurrent administration of AMD3100 and bleomycin apparently attenuated bleomycin-induced pulmonary inflammation. In this process, an inhibition of neutrophil recruitment at early stage followed by the decrease of other inflammatory cell recruitment in the lung were observed. In addition, it also inhibited the expression of cytokines, including MCP-1, MIP-2, MIP-1alpha, and TGF-beta. In contrast, when AMD3100 was administered following bleomycin treatment, the bleomycin-induced lung inflammation progressed and resulted in severe pulmonary fibrosis. In this process, an increase of inflammatory cell recruitment, an up-regulation of lung MCP-1 and TGF-beta, and a remarkable activation of p44/42 MAPK in neutrophils were observed. U0126, an inhibitor of p44/42 MAPK, significantly abolished these effects. Thus, AMD3100 has dual effect on bleomycin-induced pulmonary fibrosis. Difference of inflammatory cell recruitment and activation might be associated with the dual effect of AMD3100 on bleomycin-induced pulmonary fibrosis.  相似文献   

5.
Caspases have been implicated in the effector process of apoptosis in several systems including the Fas-Fas ligand pathway. We previously demonstrated that excessive apoptosis of lung epithelial cells and the Fas-Fas ligand pathway were essential in the pathogenesis of bleomycin-induced pneumopathy in mice. Therefore, the purpose of this study was to investigate whether a caspase inhibitor could prevent the development of this model. The expression of caspase-1 and caspase-3 was upregulated on lung epithelial cells, alveolar macrophages, and infiltrating inflammatory cells in this model. We demonstrated that a broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, decreased the caspase-1- and caspase-3-like activity, the number of apoptotic cells, the pathological grade of lung inflammation and fibrosis, and the hydroxyproline content in lung tissues in this model. We conclude that caspase inhibitors could be a new therapeutic approach against lung injury and pulmonary fibrosis.  相似文献   

6.
The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis   总被引:4,自引:0,他引:4  
Increasing evidence suggests that the development of pulmonary fibrosis is a Th2-mediated process. We hypothesized that the CC chemokines that are associated with a Th2 profile (CCL17 and CCL22) have an important role in the development of pulmonary fibrosis. We measured CCL17 and CCL22 during the pathogenesis of bleomycin-induced pulmonary fibrosis. We found that both CCL17 and CCL22 were significantly elevated through day 20 as compared with control mice. Peak expression of CCL22 preceded the peak levels of CCL17, as measured by real-time quantitative PCR. CCR4 is the receptor for CCL17 and CCL22 therefore, to further characterize the role of CCL17 and CCL22, we measured CCR4 mRNA in lung tissue of bleomycin-treated mice by real-time quantitative PCR. CCR4 was significantly elevated in bleomycin-treated mice as compared with control mice. Immunolocalization demonstrated that CCR4 was expressed predominantly on macrophages. Neutralization of CCL17, but not CCL22, led to a reduction in pulmonary fibrosis. Immunolocalization of bleomycin-treated lung tissue and human idiopathic pulmonary fibrosis tissue specimens showed that epithelial cells expressed CCL17. These findings demonstrate a central role for Th2 chemokines and the macrophage in the pathogenesis of pulmonary fibrosis and are further support for the role of a Th2 phenotype in the pathogenesis of pulmonary fibrosis.  相似文献   

7.
Evidence derived from human and animal studies strongly supports the notion that dysfunctional alveolar epithelial cells (AECs) play a central role in determining the progression of inflammatory injury to pulmonary fibrosis. We formed the hypothesis that impaired production of the regulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by injured AECs plays a role in the development of pulmonary fibrosis. To test this hypothesis, we used the well-characterized model of bleomycin-induced pulmonary fibrosis in rats. GM-CSF mRNA is expressed at a constant high level in the lungs of untreated or saline-challenged animals. In contrast, there is a consistent reduction in expression of GM-CSF mRNA in the lung during the first week after bleomycin injury. Bleomycin-treated rats given neutralizing rabbit anti-rat GM-CSF IgG develop increased fibrosis. Type II AECs isolated from rats after bleomycin injury demonstrate diminished expression of GM-CSF mRNA immediately after isolation and in response to stimulation in vitro with endotoxin compared with that in normal type II cells. These data demonstrate a defect in the ability of type II epithelial cells from bleomycin-treated rats to express GM-CSF mRNA and a protective role for GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis.  相似文献   

8.
The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.  相似文献   

9.
The mechanisms of idiopathic pulmonary fibrosis pathogenesis, a chronic and progressive interstitial lung disease, remain elusive. The complement system, a crucial arm of the innate immune response, plays a pivotal role in several pathological disorders; however, the contribution of individual complement components to lung fibrosis has not yet been examined. Complement factor 5 (C5) and its cleavage product C5a are critical mediators in inflammatory diseases. Thus, to evaluate the role of C5 in lung fibrosis, we compared congenic C5-sufficient and C5-deficient mice in a well-characterized murine model of bleomycin-induced pulmonary fibrosis. C5-deficient mice had an exaggerated inflammatory phenotype compared with C5-sufficient mice during acute bleomycin-induced lung injury. These findings suggest a protective and anti-inflammatory role for C5, which was linked to the regulation of matrix metalloproteinases involved in cell migration. In contrast, C5 had a detrimental effect during chronic stages of bleomycin-induced injury, indicating a profibrotic role for C5. This deleterious activity for C5 was associated with expression of the fibrogenic cytokine TGF-beta1 and matrix metalloproteinase-3, an important mediator in fibroblast contraction. Altogether, our data reveal novel and opposing roles for C5 in both inflammation and tissue repair. Furthermore, these findings provide insight into the development of new therapeutic strategies for idiopathic pulmonary fibrosis patients.  相似文献   

10.
Protection from pulmonary fibrosis in the absence of CCR2 signaling   总被引:27,自引:0,他引:27  
Pulmonary fibrosis can be modeled in animals by intratracheal instillation of FITC, which results in acute lung injury, inflammation, and extracellular matrix deposition. We have previously shown that despite chronic inflammation, this model of pulmonary fibrosis is lymphocyte independent. The CC chemokine monocyte-chemoattractant protein-1 is induced following FITC deposition. Therefore, we have investigated the contribution of the main monocyte-chemoattractant protein-1 chemokine receptor, CCR2, to the fibrotic disease process. We demonstrate that CCR2(-/-) mice are protected from fibrosis in both the FITC and bleomycin pulmonary fibrosis models. The protection is specific for the absence of CCR2, as CCR5(-/-) mice are not protected. The protection is not explained by differences in acute lung injury, or the magnitude or composition of inflammatory cells. FITC-treated CCR2(-/-) mice display differential patterns of cellular activation as evidenced by the altered production of cytokines and growth factors following FITC inoculation compared with wild-type controls. CCR2(-/-) mice have increased levels of GM-CSF and reduced levels of TNF-alpha compared with FITC-treated CCR2(+/+) mice. Thus, CCR2 signaling promotes a profibrotic cytokine cascade following FITC administration.  相似文献   

11.
Activation of the coagulation system and increased expression of tissue factor (TF) in pulmonary fibrosis associated with acute and chronic lung injury have been previously documented. In the present study, we evaluated the effect of TF inhibition with intratracheal gene transfer of tissue factor pathway inhibitor (TFPI), a potent and highly specific endogenous inhibitor of TF-dependent coagulation activation, in a rat model of bleomycin-induced lung fibrosis. Significant lung fibrotic changes as assessed by histologic findings and hydroxyproline content, and increased procoagulant activity and thrombin generation in bronchoalveolar lavage fluid were detected in rats after intratracheal injection of bleomycin. Intratracheal administration of an adenovirus vector expressing TFPI significantly decreased bleomycin-induced procoagulant and thrombin generation resulting in a strong inhibition of pulmonary fibrosis. TFPI-overexpression in the lung was associated with a significant reduction in gene expression of the connective tissue growth factor, a potent profibrotic growth factor. This is the first report showing that direct inhibition of TF-mediated coagulation activation abrogates bleomycin-induced pulmonary fibrosis.  相似文献   

12.
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase whose ligand is collagen. Recently, we have reported the association of DDR1 in the cytokine production of human leukocytes in in vitro and in vivo expression in idiopathic pulmonary fibrosis. However, its role in in vivo inflammation has not been fully elucidated. Small interference RNA (siRNA) can induce specific suppression of in vitro and in vivo gene expression. In this study, using a bleomycin-induced pulmonary fibrosis mouse model, we administered siRNA against DDR1 transnasally and evaluated histological changes, cytokine expression, and signaling molecule activation in the lungs. Histologically, siRNA against DDR1 successfully reduced in vivo DDR1 expression and attenuated bleomycin-induced infiltration of inflammatory cells. Furthermore, it significantly reduced inflammatory cell counts and concentrations of cytokines such as MCP-1, MIP-1alpha, and MIP-2 in bronchoalveolar lavage fluid. Subsequently, bleomycin-induced up-regulation of TGF-beta in bronchoalveolar lavage fluid was significantly inhibited, and collagen deposition in the lungs was reduced. Furthermore, siRNA against DDR1 significantly inhibited bleomycin-induced P38 MAPK activation in the lungs. Considered together, we propose that DDR1 contributes to the development of bleomycin-induced pulmonary inflammation and fibrosis.  相似文献   

13.
Phosphoinositide 3-kinase-γ (PI3Kγ) has been identified to play the critical roles in inflammatory cells activation and recruitment in multiply inflammatory diseases and it promised to be a prospective target for relevant inflammatory diseases therapy. AS605240, a selective PI3Kγ inhibitor, has been proved effective on several inflammatory diseases. In this study, we investigated the protective effect of AS605240 on bleomycin-induced pulmonary fibrosis in rats. Our results showed that orally administration of AS605240 significantly prevented lung inflammation and reduced collagen deposition. AS605240 also inhibited augmented expression of TNF-α and IL-1β induced by bleomycin instillation. Moreover, the mRNA levels of TNF-α and IL-1β in lung were remarkably suppressed. Histological assessment found that AS605240 reduced the expression of TGF-β1 and prevented T lymphocytes infiltration to lung. Phospho-Akt level in inflammatory cells by blocking PI3Kγ was down-regulated and the inhibition of Akt phosphorylation was further confirmed by Western blot. Our findings illustrated that AS605240 was effective for preventing pulmonary fibrosis by suppressing inflammatory cells recruitment and production of inflammatory cytokines. These findings also suggest that PI3Kγ may be a useful target in treating inflammation diseases and AS605240 may represent a promising novel agent for the future therapy of pulmonary fibrosis.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) signaling plays an important regulatory role during lung fibrogenesis. Smad3 was identified in the pathway for transducing TGF-beta signals from the cell membrane to the nucleus. Using mice without Smad3 gene expression, we investigated whether Smad3 could regulate bleomycin-induced pulmonary fibrosis in vivo. Mice deficient in Smad3 demonstrated suppressed type I procollagen mRNA expression and reduced hydroxyproline content in the lungs compared with wild-type mice treated with bleomycin. Furthermore, loss of Smad3 greatly attenuated morphological fibrotic responses to bleomycin in the mouse lungs, suggesting that Smad3 is implicated in the pathogenesis of pulmonary fibrosis. These results show that Smad3 contributes to bleomycin-induced lung injury and that Smad3 may serve as a novel target for potential therapeutic treatment of lung fibrosis.  相似文献   

15.
Izumo T  Kondo M  Nagai A 《Life sciences》2007,80(20):1882-1886
Leukotrienes are lipid mediators of inflammation derived from the 5-lipoxygenase pathway of arachidonic acid metabolism, and recent evidence suggests that they play an important role in pulmonary fibrosis. Montelukast is a cysteinyl-leukotriene 1 receptor antagonist that has been found to reduce airway remodeling, including subepithelial fibrosis, in a murine model of asthma, but the therapeutic effect of montelukast on pulmonary fibrosis remains unclear. In this study, we investigated whether montelukast is capable of preventing bleomycin-induced pulmonary fibrosis in mice. On day 1, C57BL/6 mice were given a single intratracheal injection of bleomycin (2.5 mg/kg), and montelukast (1.0 mg/kg) or vehicle alone subcutaneously 2 h later and on days 1-5 of each week for two weeks. The total number of cells in bronchoalveolar lavage fluid (BALF) was reduced in the montelukast group on day 7 and on day 14, and cellular inflammation and fibrosis were attenuated on day 14 as indicated by significant decrease in the Ashcroft score and lung hydroxyproline content. Although cysteinyl-leukotriene level in BALF was not significantly different, transforming growth factor beta (TGFbeta) level in BALF by ELISA and TGFbeta expression in lung tissue by immunohistochemistry was reduced on day 14 in the montelukast group. The results of this study show that montelukast inhibits the inflammatory process and development of bleomycin-induced pulmonary fibrosis in mice and that these effects may be associated with a decrease in TGFbeta expression. They also suggest that montelukast may serve as a new therapy for patients with interstitial pulmonary fibrosis.  相似文献   

16.
The pathogenesis of pulmonary fibrosis remains unclear. The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor known to be involved in the process of fibrotic change in several organs, such as peritoneal fibrosis and kidney fibrosis. The aim of this study was to examine the contribution of RAGE during the acute inflammation and chronic fibrotic phases of lung injury induced by intratracheal instillation of bleomycin in mice. Bleomycin-induced lung fibrosis was evaluated in wild-type and RAGE-deficient (RAGE-/-) mice. Bleomycin administration to wild-type mice caused an initial pneumonitis that evolved into fibrosis. While RAGE-/- mice developed a similar early inflammatory response, the mice were largely protected from the late fibrotic effects of bleomycin. The protection afforded by RAGE deficiency was accompanied by reduced pulmonary levels of the potent RAGE-inducible profibrotic cytokines transforming growth factor (TGF)-beta and PDGF. In addition, bleomycin administration induced high mobility group box 1 (HMGB-1) production, one of the ligands of RAGE, from inflammatory cells that accumulated within the air space. Coculture with HMGB-1 induced epithelial-mesenchymal transition (EMT) in alveolar type II epithelial cells from wild-type mice. However, alveolar type II epithelial cells derived from RAGE-/- mice did not respond to HMGB-1 treatment, such that the RAGE/HMGB-1 axis may play an important role in EMT. Also, bleomycin administration induced profibrotic cytokines TGF-beta and PDGF only in wild-type mouse lungs. Our results suggested that RAGE contributes to bleomycin-induced lung fibrosis through EMT and profibrotic cytokine production. Thus, RAGE may be a new therapeutic target for pulmonary fibrosis.  相似文献   

17.
18.
IFN-gamma production is upregulated in lung cells (LC) of bleomycin-treated C57BL/6 mice. The present study characterizes the time course, cellular source, and regulation of IFN-gamma expression in bleomycin-induced lung injury. IFN-gamma mRNA in LC from bleomycin-treated mice peaked 3 days after intratracheal instillation. IFN-gamma protein levels were increased at 6 days, as was the percentage of LC expressing IFN-gamma. CD4+, CD8+, and natural killer cells each contributed significantly to IFN-gamma production. IL-12 mRNA levels were increased at 1 day in LC of bleomycin-treated mice. Anti-IL-12 and anti-IL-18 antibodies decreased IFN-gamma production by these cells. To define the role of endogenous IFN-gamma in the evolution of bleomycin lung injury, we compared the effect of bleomycin in mice with a targeted knockout mutation of the IFN-gamma gene (IFN-gamma knockout) and wild-type mice. At 14 days after intratracheal bleomycin, total bronchoalveolar lavage cell counts and lung hydroxyproline were decreased in IFN-gamma knockouts compared with wild-type animals. There was no difference in morphometric parameters of fibrosis. Our data show that enhanced IFN-gamma production in the lungs of bleomycin-treated mice is at least partly IL-12 and IL-18 dependent. Absence of IFN-gamma in IFN-gamma knockout mice does not increase pulmonary fibrosis. Endogenous IFN-gamma may play a proinflammatory or profibrotic role in bleomycin-induced lung fibrosis.  相似文献   

19.
Few studies have addressed the importance of vascular remodeling in the lung during the development of bleomycin-induced pulmonary fibrosis. For fibroplasia and deposition of extracellular matrix to occur, there must be a geometric increase in neovascularization. We hypothesized that net angiogenesis during the pathogenesis of fibroplasia and deposition of extracellular matrix during bleomycin-induced pulmonary fibrosis are dependent in part upon an overexpression of the angiogenic CXC chemokine, macrophage inflammatory protein-2 (MIP-2). To test this hypothesis, we measured MIP-2 by specific ELISA in whole lung homogenates in either bleomycin-treated or control CBA/J mice and correlated these levels with lung hydroxyproline. We found that lung tissue from mice treated with bleomycin, compared with that from saline-treated controls, demonstrated a significant increase in the presence of MIP-2 that was correlated to a greater angiogenic response and total lung hydroxyproline content. Neutralizing anti-MIP-2 Abs inhibited the angiogenic activity of day 16 bleomycin-treated lung specimens using an in vivo angiogenesis bioassay. Furthermore, when MIP-2 was depleted in vivo by passive immunization, bleomycin-induced pulmonary fibrosis was significantly reduced without a change in the presence of pulmonary neutrophils, fibroblast proliferation, or collagen gene expression. This was also paralleled by a reduction in angiogenesis. These results demonstrate that the angiogenic CXC chemokine, MIP-2, is an important factor that regulates angiogenesis/fibrosis in pulmonary fibrosis.  相似文献   

20.
Found in inflammatory zone (FIZZ) 2, also known as resistin-like molecule (RELM)-β, belongs to a novel cysteine-rich secreted protein family named FIZZ/RELM. Its function is unclear, but a closely related family member, FIZZ1, has profibrotic activities. The human ortholog of rodent FIZZ1 has not been identified, but human FIZZ2 has significant sequence homology to both rodent FIZZ2 (59%) and FIZZ1 (50%). Given the greater homology to rodent FIZZ2, analyzing the role of FIZZ2 in a rodent model of bleomycin-induced pulmonary fibrosis would be of greater potential relevance to human fibrotic lung disease. The results showed that FIZZ2 was highly induced in lungs of rodents with bleomycin-induced pulmonary fibrosis and of human patients with idiopathic pulmonary fibrosis. FIZZ2 expression was induced in rodent and human lung epithelial cells by Th2 cytokines, which was mediated via STAT6 signaling. The FIZZ2 induction in murine lungs was found to be essential for pulmonary fibrosis, as FIZZ2 deficiency significantly suppressed pulmonary fibrosis and associated enhanced extracellular matrix and cytokine gene expression. In vitro analysis indicated that FIZZ2 could stimulate type I collagen and α-smooth muscle actin expression in lung fibroblasts. Furthermore, FIZZ2 was shown to have chemoattractant activity for bone marrow (BM) cells, especially BM-derived CD11c(+) dendritic cells. Notably, lung recruitment of BM-derived cells was impaired in FIZZ2 knockout mice. These findings suggest that FIZZ2 is a Th2-associated multifunctional mediator with potentially important roles in the pathogenesis of fibrotic lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号