首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha(v)beta(3) integrin has a dual role in apoptosis. Whereas ligated alpha(v)beta(3) activates cell survival pathways and suppresses pro-apoptotic signals, unligated alpha(v)beta(3) or integrins bound to soluble ligands promote apoptosis. In this study, we assessed the role of alpha(v)beta(3) in chemosensitivity of breast cancer cells expressing different levels of heregulin (HRG). Expression levels of the RGD-binding integrins alpha(v)beta(3) were measured in MDA-MB-231 human breast cancer cells and its low HRG-expressing derivative (MDA-MB-231/AS31) treated with the microtubule-interfering agents (MIAs) paclitaxel and vincristine. Following treatment, only alpha(v)beta(3) levels were significantly increased in MDA-MB-231 cells. Interestingly, alpha(v)beta(3) expression was more significantly up-regulated in the MDA-MB-231/AS31 cells than in the parental cells. This MIA-induced increase of alpha(v)beta(3) expression was correlated with a decrease in cell viability and an increase in apoptosis in MDA-MB-231/AS31 cells, indicating that overexpression of alpha(v)beta(3) is linked to chemotherapy-induced cell death in low HRG-expressing breast cancer models. Moreover, a paclitaxel-induced increase of alpha(v)beta(3) was also observed in MCF-7 cells but not in an doxorubicin-resistant derivative that shows cross-resistance to paclitaxel, further providing evidence that the extent of alpha(v)beta(3) up-regulation is related to cell damage. These results indicate that alpha(v)beta(3) integrin is dramatically up-regulated in low HRG-expressing breast cancer models that are highly responsive to MIAs, thus providing a novel molecular marker of chemosensitivity influenced by HRG levels in breast cancer cells.  相似文献   

2.
Thrombospondin-1 (TSP1) is a matricellular protein that displays both pro- and anti-adhesive activities. Binding to sulfated glycoconjugates mediates most high affinity binding of soluble TSP1 to MDA-MB-435 cells, but attachment and spreading of these cells on immobilized TSP1 is primarily beta1 integrin-dependent. The integrin alpha3beta1 is the major mediator of breast carcinoma cell adhesion and chemotaxis to TSP1. This integrin is partially active in MDA-MB-435 cells but is mostly inactive in MDA-MB-231 and MCF-7 cells, which require beta1 integrin activation to induce spreading on TSP1. Integrin-mediated cell spreading on TSP1 is accompanied by extension of filopodia containing beta1 integrins. TSP1 binding activity of the alpha3beta1 integrin is not stimulated by CD47-binding peptides from TSP1 or by protein kinase C activation, which activate alphavbeta3 integrin function in the same cells. In MDA-MB-231 but not MDA-MB-435 cells, this integrin is activated by pertussis toxin, whereas serum, insulin, insulin-like growth factor-1, and ligation of CD98 increase activity of this integrin in both cell lines. Serum stimulation is accompanied by increased surface expression of CD98, whereas insulin-like growth factor-1 does not increase CD98 expression. Thus, the pro-adhesive activity of TSP1 for breast carcinoma cells is controlled by several signals that regulate activity of the alpha3beta1 integrin.  相似文献   

3.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

4.
旨在探究骨唾液酸蛋白(BSP)是否通过整合素αvβ3对整合素连接激酶(ILK)信号通路进行调控。BSP基因沉默乳腺癌MDA-MB-231细胞,流式细胞仪在细胞水平检测BSP不同水平的细胞株中整合素αvβ3的表达量。Western blotting检测磷酸化ILK水平的变化,MTT法检测细胞增殖能力。与对照组231BO-Scrambled细胞相比,BSP基因沉默组231BO-BSP27细胞中整合素αvβ3的表达水平明显下调(61.32±1.94)%(P<0.01)。整合素αvβ3鼠抗单克隆抗体(LM609)处理前的BSP基因沉默组231BO-BSP27细胞与21BO-Scrambled细胞相比,ILK磷酸化水平下调明显(39.38±1.38)%(P<0.01);LM609处理后的231BO-BSP27细胞与21BO-Scrambled细胞相比,ILK磷酸化水平下调明显(33.78±1.51)%(P<0.01)。向乳腺癌细胞231BO-scrambled和231BO-BSP27中添加LM609,MTT试验结果显示两株乳腺癌细胞的增殖能力均有降低(P<0.05)。BSP通过整合素αvβ3对乳腺癌MDA-MB-231细胞ILK信号通路进行调控,并影响细胞增殖。  相似文献   

5.
Salmosin, a disintegrin purified from a Korean snake (Agkistrodon halys brevicaudus) venom, interacts with integrin alpha(v)beta(3) and inhibits the proliferation of bovine capillary endothelial (BCE) cells induced by basic fibroblast growth factor (bFGF). We investigated salmosin's mechanism of inhibition of BCE cell proliferation by examining changes in the cytoskeleton and activation of integrin-mediated signaling molecules. Salmosin disassembled cortical actins at focal adhesions and induced cells to be rounded and detached, but it did not alter microtubule structures in the early stage of cells being rounded. Immunolocalization of paxillin also demonstrated that focal adhesions were disassembled by salmosin. In salmosin-treated BCE cells, focal adhesion kinase (FAK) was dephosphorylated and expression of paxillin and p130(CAS) was decreased, but PI3 kinase, ILK, and beta-catenin were not expressed in decreased amounts or modified, suggesting that salmosin inactivated FAK-dependent integrin signaling pathways. While BCE cells proliferated normally on plates coated with salmosin, cells treated with salmosin eventually underwent apoptosis. These observations strongly suggest that salmosin disorganizes focal contacts to detach cells by competing with the extracellular matrix (ECM) for direct binding to integrin alpha(v)beta(3) on the cell surface, eventually leading to apoptosis.  相似文献   

6.
Integrins govern cellular adhesion and transmit signals leading to activation of intracellular signaling pathways aimed to prevent apoptosis. Herein we report that attachment of oligodendrocytes (OLs) to fibronectin via alpha(v)beta(3) integrin receptors rendered the cells more resistant to apoptosis than the cells attached to laminin via alpha(6)beta(1) integrins. Investigation of molecular mechanisms involved in alpha(v)beta(3) integrin-mediated cell survival revealed that ligation of the integrin with fibronectin results in higher expression of activated Lyn kinase. Both in OLs and in the mouse brain, Lyn selectively associates with alpha(v)beta(3) integrin, not with alpha(v)beta(5) integrin, leading to suppression of acid sphingomyelinase activity and preventing ceramide-mediated apoptosis. In OLs, knockdown of Lyn with small interfering RNA resulted in OL apoptosis with concomitant accumulation of C(16)-ceramide due to activation of acid sphingomyelinase (ASMase) and sphingomyelin hydrolysis. Knocking down ASMase partially protected OLs from apoptosis. In the brain, ischemia/reperfusion (IR) triggered rearrangements in the alpha(v)beta(3) integrin-Lyn kinase complex leading to disruption of Lyn kinase-mediated suppression of ASMase activity. Thus, co-immunoprecipitation studies revealed an increased association of alpha(v)beta(3) integrin-Lyn kinase complex with ionotropic glutamate receptor subunits, GluR2 and GluR4, after cerebral IR. Sphingolipid analysis of the brain demonstrated significant accumulation of ceramide and sphingomyelin hydrolysis. The data suggest a novel mechanism for regulation of ASMase activity during cell adhesion in which Lyn acts as a key upstream kinase that may play a critical role in cerebral IR injury.  相似文献   

7.
Brain-specific angiogenesis inhibitor 1 (BAI1) is a transmembrane protein with anti-angiogenic activity. The mechanisms underlying BAI1 activity are unknown. In this study, we found that overexpression of BAI1 increased cell death in human umbilical vein endothelial cells (HUVECs) and, to a lesser degree, in SHSY5Y and U343 cells. Conditioned medium from BAI1-transfected U343 cells inhibited proliferation of HUVECs, and this effect was neutralized by addition of anti-BAI1 serum. The conditioned medium contained four cleavage products of the BAI1 extracellular domain. BAI1's middle extracellular region containing five thrombospondin type 1 repeats (BAI1-TSR) was sufficient for BAI1's antiproliferative effect on HUVECs. BAI1's action on HUVECs was blocked by anti-alpha(v) integrin, but not by anti-CD36 antibody treatment. Introduction of alpha(v)beta(5) integrin into HEK293 cells rendered them susceptible to cell death by BAI1, and BAI1-TSR bound with alpha(v)beta(5) integrin, but not to alpha(v)beta(3) integrin in brain tissue. Fluorescent BAI1-TSR colocalized with alpha(v)beta(5) integrin in HUVECs. Together, our results indicate that BAI1 has antiproliferative action on surrounding endothelial cells by blocking alpha(v)beta(5) integrin, and its active region is BAI1-TSR. BAI1-TSR could be valuable for regulating brain angiogenesis.  相似文献   

8.
In this study, we report the role of integrin alpha(5) in promoting melanoma metastasis. The alpha(5) expression was remarkably elevated in highly metastatic B16F10 melanoma cells compared to lowly metastatic B16F1 cells, whereas no significant changes were detected in those of integrin alpha(4), alpha(v), and beta(1) subunits. Neutralization of alpha(5) with anti-alpha(5) antibody significantly suppressed the potential of B16F10 cells for pulmonary metastasis in mice and inhibited cell adhesion or spreading to fibronectin in vitro. Furthermore, loss of the interaction between alpha(5) and fibronectin diminished cell survival and induced apoptosis in B16F10 cells. Above results provide clear evidence that integrin alpha(5) is positively correlated with melanoma metastasis and might be an anti-melanoma target.  相似文献   

9.
10.
Malignant transformation is highly associated with altered expression of cell surface N-linked oligosaccharides. These changes concern integrins, a family of cell surface glycoproteins involved in the attachment and migration of cells on various extracellular matrix proteins. The integrin alpha3beta1 is particularly interesting because of its role in migration and invasion of several types of metastatic tumours. In this study, alpha3beta1 from human bladder T24 carcinoma cells was purified and treated with peptide N-glycosidase F. Then the N-glycans of the alpha3 and beta1 subunits were characterized using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In alpha3beta1 integrin the presence of high-mannose, hybrid and predominantly complex type N-oligosaccharides was shown. Unlike to normal epithelium cells, in both subunits of alpha3beta1 integrin from cancer cells, the sialylated tetraantennary complex type glycan Hex7HexNAc6FucSia4 was present. In a direct ligand binding assay, desialylated alpha3beta1 integrin exhibited significantly higher fibronectin-binding capability than untreated integrin, providing evidence that sialic acids play a direct role in ligand-receptor interaction. Moreover, alpha3beta1 integrin was shown to take part in T24 cell migration on fibronectin: anti-alpha3 antibodies induced ca 30% inhibition of wound closure. Treatment of T24 cells with swainsonine reduced the rate of bladder carcinoma cell migration by 16%, indicating the role of beta1,6 branched complex type glycans in this process. Our data show that alpha3beta1 integrin function may be altered by glycosylation, that both subunits contribute to these changes, and that glycosylation may be considered a newly found mechanism in the regulation of integrin function.  相似文献   

11.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.  相似文献   

12.
We reported previously that endogenous p38 MAPK activity is elevated in invasive breast cancer cells and that constitutive p38 MAPK activity is important for overproduction of uPA in these cells (Huang, S., New, L., Pan, Z., Han, J., and Nemerow, G. R. (2000) J. Biol. Chem. 275, 12266-12272). However, it is unclear how elevated endogenous p38 MAPK activity is maintained in invasive breast cancer cells. In the present study, we found that blocking alpha(v) integrin functionality with a function-blocking monoclonal antibody or down-regulating alpha(v) integrin expression with alpha(v)-specific antisense oligonucleotides significantly decreased the levels of active p38 MAPK and inhibited cell-associated uPA expression in invasive breast cancer MDA-MB-231 cells. These results suggest a function link between alpha(v) integrin, p38 MAPK activity, and uPA expression in invasive tumor cells. We also found that vitronectin/alpha(v) integrin ligation specifically induced p38 MAPK activation and uPA up-regulation in invasive MDA-MB-231 cells but not in non-invasive MCF7 cells. Finally, using a panel of melanoma cells, we demonstrated that the cytoplasmic tail of alpha(v) integrin subunit is required for alpha(v) integrin ligation-induced p38 MAPK activation.  相似文献   

13.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

14.
He Q  Huang B  Zhao J  Zhang Y  Zhang S  Miao J 《The FEBS journal》2008,275(22):5725-5732
Integrin beta4 is a tissue-specific protein, but its role in autophagy of lung adenocarcinoma cells is not clear. In this study, we used microtubule-associated protein 1 light chain 3 processing and acridine orange staining to reveal that knockdown of integrin beta4 by its specific siRNA induced autophagic cell death in A549 lung cancer cells. Next, we investigated the effects of siRNA-mediated downregulation of integrin beta4 on cell death and the level of p53. The proportion of dead cells and level of p53 were significantly increased. Inhibition of autophagy by the inhibitor 3-methyladenine attenuated the cell death induced by integrin beta4 knockdown. To further understand the relationship between p53 and integrin beta4 in autophagic cell death, we inhibited the expression of integrin beta4 by its specific siRNA in p53-mutated H322 lung cancer cells. Knockdown of integrin beta4 could not induce autophagic cell death in H322 cells. The data suggest that integrin beta4 is implicated in and associated with p53 in autophagy of lung cancer cells.  相似文献   

15.
Integrin activation is essential for dynamically linking the extracellular environment and cytoskeletal/signaling networks. Activation is controlled by integrins' short cytoplasmic tails (CTs). It is widely accepted that the head domain of talin (talin-H) can mediate integrin activation by binding to two sites in integrin beta's CT; in integrin beta(3) this is an NPLY(747) motif and the membrane-proximal region. Here, we show that the C-terminal region of integrin beta(3) CT, composed of a conserved TS(752)T region and NITY(759) motif, supports integrin activation by binding to a cytosolic binding partner, kindlin-2, a widely distributed PTB domain protein. Co-transfection of kindlin-2 with talin-H results in a synergistic enhancement of integrin alpha(IIb)beta(3) activation. Furthermore, siRNA knockdown of endogenous kindlin-2 impairs talin-induced alpha(IIb)beta(3) activation in transfected CHO cells and blunts alpha(v)beta(3)-mediated adhesion and migration of endothelial cells. Our results thus identify kindlin-2 as a novel regulator of integrin activation; it functions as a coactivator.  相似文献   

16.
17.
Hepatic stellate cells are the major source of the extracellular matrix that accumulates in fibrotic liver. During progressive liver fibrosis, hepatic stellate cells proliferate, but during resolution of fibrosis there is extensive stellate cell apoptosis that coincides with degradation of the liver scar. We have examined the possibility that the fate of stellate cells is influenced by the extracellular matrix through the intermediary of alpha(v)beta(3) integrin. alpha(v)beta(3) integrin was expressed by activated, myofibroblastic rat and human stellate cells in culture. Antagonism of this integrin using neutralizing antibodies, echistatin, or small inhibitory RNA to silence alpha(v) subunit expression inhibited stellate cell proliferation and their expression of proliferating cell nuclear antigen and activated forms of p44 and p42 MAPK. These alpha(v)beta(3) antagonists also increased apoptosis of cultured stellate cells, and this was associated with an increase in the BAX/BCL-2 protein ratio, induction of nuclear DNA fragmentation, and activation of intracellular caspase-3. Expression of tissue inhibitor of metalloproteinases-1 by activated stellate cells was reduced by the alpha(v)beta(3) antagonists, while matrix metalloproteinase-9 synthesis was enhanced. Stellate cells incubated with active recombinant matrix metalloproteinase-9 showed enhanced apoptosis, while cells treated with a synthetic inhibitor of this protease showed increased survival. Our studies suggest that alpha(v)beta(3) integrin regulates the fate of hepatic stellate cells. Degradation of alpha(v)beta(3) ligands surrounding activated stellate cells during resolution of liver fibrosis might decrease alpha(v)beta(3) integrin ligation, suppressing stellate cell proliferation and inducing a fibrolytic, matrix metalloproteinase-secreting phenotype that may prime stellate cells for apoptosis.  相似文献   

18.
Enhanced expression of both integrin alpha v beta 3 and platelet-derived growth factor receptor (PDGFr) has been described in glioblastoma tumors. We therefore explored the possibility that integrin alpha v beta 3 cooperates with PDGFr to promote cell migration in glioblastoma cells, and extended the study to identify the Src family members that are activated on PDGF stimulation. Glioblastoma cells utilize integrins alpha v beta 3 and alpha v beta 5 to mediate vitronectin attachment. We found that physiologic PDGF stimulation (83 pm, 10 min) of vitronectin-adherent cells promoted the specific recruitment of integrin alpha v beta 3-containing focal adhesions to the cell cortex and alpha v beta 3-mediated cell motility. Analysis of PDGFr immunoprecipitates indicated an association of the PDGFr beta with integrin alpha v beta 3, but not integrin alpha v beta 5. Cells plated onto collagen or laminin, which engage different integrins, exhibited significantly less migration on PDGF stimulation, indicating a cooperation of alpha v beta 3 and the PDGFr beta in glioblastoma cells that promotes migration. Further analysis of the cells plated onto vitronectin indicated that PDGF stimulation caused an increase in Src kinase activity, which was associated with integrin alpha v beta 3. In the vitronectin-adherent cells, Lyn was associated preferentially with alpha v beta 3 both in the presence and absence of PDGF stimulation. In contrast, Fyn was associated with both alpha v beta 3 and alpha v beta 5. Moreover, PDGF stimulation increased the activity of Lyn, but not Fyn, in vitronectin-adherent cells, and the activity of Fyn, but not Lyn, in laminin-adherent cells. Using cells attached to mAb anti-alpha v beta 3 or mAb anti-integrin alpha 6, we confirmed the activation of specific members of the Src kinase family with PDGF stimulation. Down-regulation of Lyn expression by siRNA significantly inhibited the cell migration mediated by integrin alpha v beta 3 in PDGF-stimulated cells, demonstrating the PDGFr beta cooperates with integrin alpha v beta 3 in promoting the motility of vitronectin-adherent glioblastoma cells through a Lyn kinase-mediated pathway. Notably, the data indicate that engagement of different integrins alters the identity of the Src family members that are activated on stimulation with PDGF.  相似文献   

19.
20.
Osteopontin (OPN) is a secreted phosphoprotein that has been associated with malignancy of breast and other cancers. OPN binds to several cell surface integrins including alpha(v)beta(3), alpha(v)beta(5), and alpha(v)beta(1). Although the relative contribution of these integrins to breast cancer cell malignancy is uncertain, correlative studies suggest that alpha(v)beta(3) may be particularly associated with increased tumor aggressiveness. Previously, we reported that tumorigenic, nonmetastatic 21NT mammary carcinoma cells respond to OPN through alpha(v)beta(5) and alpha(v)beta(1) but not alpha(v)beta(3). Here, we determined that 21NT cells lack beta(3) expression, and we asked whether expression of alpha(v)beta(3) could enhance the ability of breast cancer cells to respond to the malignancy-promoting effects of OPN both in vitro and in vivo. 21NT cells stably transfected with beta(3) showed significantly increased adhesion, migration, and invasion to OPN in vitro compared with vector control. To determine if beta(3) could also enhance the response of breast epithelial cells to OPN in vivo, cells stably transfected with both beta(3) and OPN (NT/Obeta(3)) were injected into the mammary fat pad of female nude mice and primary tumor growth was assessed relative to controls. Mice injected with NT/Obeta(3) cells demonstrated a significantly increased primary tumor take (75% of mice) compared with controls (0-12.5% of mice) as well as a decreased tumor doubling time and a decreased tumor latency period. These results suggest that increased expression of the alpha(v)beta(3) integrin during breast cancer progression can make tumor cells more responsive to malignancy-promoting ligands such as OPN and result in increased tumor cell aggressiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号