首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: The presence of P-glycoprotein in the cell plasma membrane limits the penetration of many cytotoxic substances into cells that express the gene product. There is considerable evidence also to indicate that P-glycoprotein is expressed as part of the normal blood-brain barrier in the luminal membranes of the cerebral capillary endothelial cells, where it presumably performs a protective function for the brain. This report describes the functional expression of P-glycoprotein in an immortalised cell line, RBE4, derived from rat cerebral capillary endothelial cells. The expression of P-glycoprotein is demonstrated by western immunoblotting and by immunogold and fluorescent staining with monoclonal antibodies. The cellular accumulation of [3H]colchicine and [3H]vinblastine is investigated and shown to be enhanced by the presence of azidothymidine, chlorpromazine, verapamil, cyclosporin A, and PSC 833 ([3'-keto-Bmt1]-[Val2]-cyclosporin) at 50 or 100 µ M concentration. It is concluded that the RBE4 cell line is a valuable tool for investigating the mechanisms of P-glycoprotein activity both in the blood-brain barrier and in multidrug resistance in general.  相似文献   

2.
Abstract: Two membrane glycoproteins acting as energy-dependent efflux pumps, mdr -encoded P-glycoprotein (P-gp) and the more recently described multidrug resistance-associated protein (MRP), are known to confer cellular resistance to many cytotoxic hydrophobic drugs. In the brain, P-gp has been shown to be expressed specifically in the capillary endothelial cells forming the blood-brain barrier, but localization of MRP has not been well characterized yet. Using RT-PCR and immunoblot analysis, we have compared the expression of P-gp and Mrp1 in homogenates, isolated capillaries, primary cultured endothelial cells, and RBE4 immortalized endothelial cells from rat brain. Whereas the mdr1a P-gp-encoding mRNA was specifically detected in brain microvessels and mdr1b mRNA in brain parenchyma, mrp1 mRNA was present both in microvessels and in parenchyma. However, Mrp1 was weakly expressed in microvessels. Mrp1 expression was higher in brain parenchyma, as well as in primary cultured brain endothelial cells and in immortalized RBE4 cells. This Mrp1 overexpression in cultured brain endothelial cells was less pronounced when the cells were cocultured with astrocytes. A low Mrp activity could be demonstrated in the endothelial cell primary monocultures, because the intracellular [3H]vincristine accumulation was increased by several MRP modulators. No Mrp activity was found in the cocultures or in the RBE4 cells. We suggest that in rat brain, Mrp1, unlike P-gp, is not predominantly expressed in the blood-brain barrier endothelial cells and that Mrp1 and the mdr1b P-gp isoform may be present in other cerebral cells.  相似文献   

3.
Thiamine is an essential, positively charged (under physiologic conditions), water-soluble vitamin requiring transport into brain. Brain thiamine deficiency has been linked to neurodegenerative disease by subsequent impairment of thiamine-dependent enzymes used in brain glucose/energy metabolism. In this report, we evaluate brain uptake and efflux of [3H]thiamine using the in situ rat brain perfusion technique. To confirm brain distribution was not related to blood-brain barrier endothelial cell uptake, we compared parenchymal and cell distribution of [3H]thiamine using capillary depletion. Our work supports previous literature findings suggesting blood-brain barrier thiamine uptake is via a carrier-mediated transport mechanism, yet extends the literature by redefining the kinetics with more sensitive methodology. Significantly, [3H]thiamine brain accumulation was influenced by a considerable efflux rate. Evaluation of the efflux mechanism demonstrated increased stimulation by the presence of increased vascular thiamine. The influx transport mechanism and efflux rate were each comparable throughout brain regions despite documented differences in glucose and thiamine metabolism. The observation that [3H]thiamine blood-brain barrier influx and efflux is regionally homogenous may have significant relevance to neurodegenerative disease linked to thiamine deficiency.  相似文献   

4.
In physiological conditions, there is a net transport of choline from brain to blood, despite the fact that the choline concentration is higher in plasma than in CSF. Because of the blood-brain barrier characteristics, such passage against the concentration gradient takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, [3H]choline uptake properties have been analyzed in capillaries isolated from bovine brain. [3H]Choline uptake was linear with time for up to 1 h. Nonlinear regression analysis of the uptake rates at different substrate concentrations gave the best fit to a system of two components, one of which was saturable (Km = 17.8 +/- 4.8 microM; Vmax = 11.3 +/- 3.4 pmol/min/mg of protein) and the other of which was nonsaturable at concentrations up to 200 microM. The [3H]choline transport was significantly reduced in the absence of sodium and after incubation with 10(-4) M ouabain for 30 min. Ouabain also inhibited choline uptake in purified cerebral endothelial cells, but not in the endothelium isolated from bovine aorta. Accordingly, cerebral endothelial cells were able to concentrate [3H]choline, with this effect being abolished by ouabain, whereas in aortic endothelial cells the [3H]choline intracellular concentration was never higher than that of the incubation medium. These results suggest that the blood-brain barrier endothelium is specifically provided with an energy-dependent choline transport system, which may explain the choline efflux from the brain and the maintenance of a low choline concentration in the cerebral extracellular space.  相似文献   

5.
6.
We have investigated the involvement of P-glycoprotein (P-gp)/caveolin-1 interaction in the regulation of brain endothelial cells (EC) migration and tubulogenesis. P-gp overexpression in MDCK-MDR cells was correlated with enhanced cell migration whereas treatment with P-gp inhibitors CsA or PSC833 reduced it. Transfection of RBE4 rat brain endothelial cells with mutated versions of MDR1, in the caveolin-1 interaction motif, decreased the interaction between P-gp and caveolin-1, enhanced P-gp transport activity and cell migration. Moreover, down-regulation of caveolin-1 in RBE4 cells by siRNA against caveolin-1 stimulated cell migration. Interestingly, the inhibition of P-gp/caveolin-1 interaction increased also EC tubulogenesis. Furthermore, decrease of P-gp expression by siRNA inhibited EC tubulogenesis. These data indicate that the level of P-gp/caveolin-1 interaction can modulate brain endothelial angiogenesis and P-gp dependent cell migration.  相似文献   

7.
P-glycoprotein (P-gp), an adenosine triphosphate (ATP)-binding cassette transporter which acts as a drug efflux pump, is highly expressed at the blood-brain barrier (BBB) where it plays an important role in brain protection. Recently, P-gp has been reported to be located in the caveolae of multidrug-resistant cells. In this study, we investigated the localization and the activity of P-gp in the caveolae of endothelial cells of the BBB. We used an in vitro model of the BBB which is formed by co-culture of bovine brain capillary endothelial cells (BBCEC) with astrocytes. Caveolar microdomains isolated from BBCEC are enriched in P-gp, cholesterol, caveolin-1, and caveolin-2. Moreover, P-gp interacts with caveolin-1 and caveolin-2; together, they form a high molecular mass complex. P-gp in isolated caveolae is able to bind its substrates, and the caveolae-disrupting agents filipin III and nystatin decrease P-gp transport activity. In addition, mutations in the caveolin-binding motif present in P-gp reduced the interaction of P-gp with caveolin-1 and increased the transport activity of P-gp. Thus, P-gp expressed at the BBB is mainly localized in caveolae and its activity may be modulated by interaction with caveolin-1.  相似文献   

8.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

9.
10.
Transport of [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) [( 3H]Leu-enkephalin) across the blood-brain barrier was studied in the adult guinea pig, by means of vascular perfusion of the head in vivo. The unidirectional transfer constant (Kin) estimated from the multiple-time uptake data for [3H]Leu-enkephalin ranged from 3.62 X 10(-3) to 3.63 X 10(-3) ml min-1 g-1 in the parietal cortex, caudate nucleus, and hippocampus. Transport of [3H]Leu-enkephalin was not inhibited by unlabelled L-tyrosine (the N-terminal amino acid) at a concentration as high as 5 mM, or by the inhibitor of aminopeptidase activity bacitracin (2 mM), suggesting that there was no enzymatic degradation of peptide at the blood-brain barrier. By contrast, 2 mM unlabelled Leu-enkephalin strongly inhibited the unidirectional blood-to-brain transport of [3H]Leu-enkephalin by 74-78% in the parietal cortex, caudate nucleus, and hippocampus. The tetrapeptide tyrosyl-glycyl-glycyl-phenylalanine (without the C-terminal leucine of Leu-enkephalin), at a concentration of 5 mM, caused a moderate inhibition ranging from 15 to 29% in the brain regions studied, whereas the tetrapeptide glycyl-glycyl-phenylalanyl-leucine (without the N-terminal tyrosine) at 5 mM was without effect on Leu-enkephalin transport. Unidirectional brain uptake of Leu-enkephalin was not altered in the presence of naloxone at a concentration as high as 3 mM (1 mg/ml), suggesting that there is no binding of Leu-enkephalin to opioid receptors at the blood-brain barrier. It is concluded that there is a specific transport mechanism for Leu-enkephalin at the blood-brain barrier in the guinea pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Choline Uptake by Cerebral Capillary Endothelial Cells in Culture   总被引:4,自引:3,他引:1  
A passage of choline from blood to brain and vice versa has been demonstrated in vivo. Because of the presence of the blood-brain barrier, such passage takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, the choline transport properties of cerebral capillary endothelial cells have been studied in vitro. Bovine endothelial cells in culture were able to incorporate [3H]choline by a carrier-mediated mechanism. Nonlinear regression analysis of the uptake curves suggested the presence of two transport components in cells preincubated in the absence of choline. One component showed a Km of 7.59 +/- 0.8 microM and a maximum capacity of 142.7 +/- 9.4 pmol/2 min/mg of protein, and the other one was not saturable within the concentration range used (1-100 microM). When cells were preincubated in the presence of choline, a single saturable component was observed with a Km of 18.5 +/- 0.6 microM and a maximum capacity of 452.4 +/- 42 pmol/2 min/mg of protein. [3H]Choline uptake by endothelial cells was temperature dependent and was inhibited by the choline analogs hemicholinium-3, deanol, and AF64A. The presence of ouabain or 2,4-dinitrophenol did not affect the [3H]choline transport capacity of endothelial cells. Replacement of sodium by lithium and cell depolarization by potassium partially inhibited choline uptake. When cells had been preincubated without choline, recently transported [3H]choline was readily phosphorylated and incorporated into cytidine-5'-diphosphocholine and phospholipids; however, under steady-state conditions most (63%) accumulated [3H]choline was not metabolized within 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood-brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (-23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 microM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [(3)H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood-brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

13.
Transport of L-[3H]carnitine and acetyl-L-[3H]carnitine at the blood-brain barrier (BBB) was examined by using in vivo and in vitro models. In vivo brain uptake of acetyl-L-[3H]carnitine, determined by a rat brain perfusion technique, was decreased in the presence of unlabeled acetyl-L-carnitine and in the absence of sodium ions. Similar transport properties for L-[3H]carnitine and/or acetyl-L-[3H]carnitine were observed in primary cultured brain capillary endothelial cells (BCECs) of rat, mouse, human, porcine and bovine, and immortalized rat BCECs, RBEC1. Uptakes of L-[3H]carnitine and acetyl-L-[3H]carnitine by RBEC1 were sodium ion-dependent, saturable with K(m) values of 33.1 +/- 11.4 microM and 31.3 +/- 11.6 microM, respectively, and inhibited by carnitine analogs. These transport properties are consistent with those of carnitine transport by OCTN2. OCTN2 was confirmed to be expressed in rat and human BCECs by an RT-PCR method. Furthermore, the uptake of acetyl-L-[3H]carnitine by the BCECs of juvenile visceral steatosis (jvs) mouse, in which OCTN2 is functionally defective owing to a genetical missense mutation of one amino acid residue, was reduced. The brain distributions of L-[3H]carnitine and acetyl-L-[3H]carnitine in jvs mice were slightly lower than those of wild-type mice at 4 h after intravenous administration. These results suggest that OCTN2 is involved in transport of L-carnitine and acetyl-L-carnitine from the circulating blood to the brain across the BBB.  相似文献   

14.
There is evidence from recent studies that the brain endothelium (of capillaries and/or larger vessels) may serve as a specific target for serotonin [5-hydroxytryptamine (5-HT)]. This neurotransmitter is expected to be involved in the regulation of the blood-brain barrier (BBB) permeability and/or of the cerebral blood flow via receptor-mediated mechanisms. Effective control of these processes depends on a speedy uptake and metabolism of released 5-HT molecules. To realize this, a similar mechanism of 5-HT uptake as in brain may exist at the BBB. In this study, we have demonstrated using RT-PCR that 5-HT transporter mRNA is present in the brain endothelium and that a saturable transport system for 5-HT is functionally expressed in immortalized rat brain endothelial cells (RBE4 cells). These cells take up [3H]5-HT by an active saturable process with a Km value of 397 +/- 64 nmol/L and a transport capacity of 51.7 +/- 3.5 pmol x g(-1) x min(-1). The 5-HT uptake depends on Na+, as indicated by the replacement of NaCl by LiCl. The 5-HT uptake was sensitive to specific 5-HT transport inhibitors such as paroxetine, clomipramine, fluoxetine, and citalopram but not to inhibitors of the vesicular amine transporter such as reserpine or tetrabenazine. Our results demonstrate that cerebral endothelial cells are able to participate actively in the removal and metabolism of the released 5-HT, which supports the concept of direct serotoninergic regulation of the BBB function.  相似文献   

15.
Pantothenic Acid Transport Through the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
The unidirectional influx of D-pantothenic acid (PA) across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique using [3H]D-PA (1.1 Ci/mmol). PA was transported across the blood-brain barrier by a saturable system that could be described by a Michaelis-Menten transport model with a half-saturation concentration and maximal influx rate of 19 microM and 0.21 nmol/g of brain/min, respectively. PA (0.3 microM) transport through the blood-brain barrier was significantly inhibited by probenecid, nonanoic acid, and biotin (all less than or equal to 0.25 mM), but not by penicillin G, pyruvate, beta-hydroxybutyrate, L-leucine (all 1 mM), or poly-L-lysine HBr (1 mg/ml). Probenecid (0.25 mM), nonanoic acid (0.5 mM), and PA (1.0 mM) did not inhibit [3H]L-leucine transport through the blood-brain barrier, whereas 30 microM-L-leucine inhibited [3H]leucine transport to 23% of control values. Thus, PA is transported through the blood-brain barrier by a low-capacity, saturable transport system with a half-saturation concentration approximately 10 times the plasma PA concentration. Although involved in the transfer of PA from blood into brain, this system does not play an important regulatory role in the synthesis of CoA from PA in brain.  相似文献   

16.
Biotin Transport Through the Blood-Brain Barrier   总被引:6,自引:4,他引:2  
The unidirectional influx of biotin across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]biotin. Biotin was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 100 microM. The permeability-surface area products were 10(-4) s-1 with a biotin concentration of 0.02 microM in the perfusate. Probenecid, pantothenic acid, and nonanoic acid but not biocytin or biotin methylester (all 250 microM) inhibited biotin transfer through the blood-brain barrier. The isolated rabbit choroid plexus was unable to concentrate [3H]biotin from medium containing 1 nM [3H]biotin. These observations provide evidence that: biotin is transported through the blood-brain barrier by a saturable transport system that depends on a free carboxylic acid group, and the choroid plexus is probably not involved in the transfer of biotin between blood and cerebrospinal fluid.  相似文献   

17.
Rat brain microvessel endothelial cells were immortalized by transfection with a plasmid containing the E1A adenovirus gene. One clone, called RBE4, was further characterized. These cells display a nontransformed phenotype and express typical endothelial markers, Factor VIII-related antigen and Bandeiraea simplicifolia binding sites. When RBE4 cells were grown in the presence of bFGF and on collagen-coated dishes, confluent cultures developed sprouts that extend above the monolayer and organized into three-dimensional structures. The activity of the blood-brain barrier-associated enzyme, gamma-glutamyl transpeptidase (γGTP), was expressed in these structures, not in the surrounding monolayer. Similar results were obtained with the microvessel-related enzyme alkaline phosphatase (ALP). Addition of agents that elevate intracellular cAMP reduced the formation of three-dimensional structures, but every cell inside the aggregates still expressed γCTP and ALP activities. Such structures, associated with high levels of γCTP and ALP activities, were also induced by astroglial factors, including (1) plasma membranes from newborn rat primary astrocytes or rat glioma C6 cells, (2) C6 conditioned media, or (3) diffusible factors produced by primary astrocytes grown in the presence of, but not in contact with RBE4 cells. RBE4 cells thus remain sensitive to angiogenic and astroglial factors for the expression of the blood-brain barrier-related γCTP activity, as well as for ALP activity, and could constitute the basis of a valuable in vitro model of the blood-brain barrier. © 1994 wiley-Liss, Inc.  相似文献   

18.
Endothelium of the cerebral blood vessels, which constitutes the blood-brain barrier, controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells using two rat brain endothelial cell lines (RBE4 and GP8), we report in this paper that ICAM-1 cross-linking induces a sustained tyrosine phosphorylation of the phosphatidylinositol-phospholipase C (PLC)gamma1, with a concomitant increase in both inositol phosphate production and intracellular calcium concentration. Our results suggest that PLC are responsible, via a calcium- and protein kinase C (PKC)-dependent pathway, for p60Src activation and tyrosine phosphorylation of the p60Src substrate, cortactin. PKCs are also required for tyrosine phosphorylation of the cytoskeleton-associated proteins, focal adhesion kinase and paxillin, but not for ICAM-1-coupled p130Cas phosphorylation. PKC's activation is also necessary for stress fiber formation induced by ICAM-1 cross-linking. Finally, cell pretreatment with intracellular calcium chelator or PKC inhibitors significantly diminishes transmonolayer migration of activated T lymphocytes, without affecting their adhesion to brain endothelial cells. In summary, our data demonstrate that ICAM-1 cross-linking induces calcium signaling which, via PKCs, mediates phosphorylation of actin-associated proteins and cytoskeletal rearrangement in brain endothelial cell lines. Our results also indicate that these calcium-mediated intracellular events are essential for lymphocyte migration through the blood-brain barrier.  相似文献   

19.
Adropin is a peptide encoded by the energy homeostasis associated gene (Enho) and plays a critical role in the regulation of lipid metabolism, insulin sensitivity, and endothelial function. Little is known of the effects of adropin in the brain and whether this peptide modulates ischemia-induced blood-brain barrier (BBB) injury. Here, we used an in vitro BBB model of rat brain microvascular endothelial cells (RBE4) and hypothesized that adropin would reduce endothelial permeability during ischemic conditions. To mimic ischemic conditions in vitro, RBE4 cell monolayers were subjected to 16 h hypoxia/low glucose (HLG). This resulted in a significant increase in paracellular permeability to FITC-labeled dextran (40 kDa), a dramatic upregulation of vascular endothelial growth factor (VEGF), and the loss of junction proteins occludin and VE-cadherin. Notably, HLG also significantly decreased Enho expression and adropin levels. Treatment of RBE4 cells with synthetic adropin (1, 10 and 100 ng/ml) concentration-dependently reduced endothelial permeability after HLG, but this was not mediated through protection to junction proteins or through reduced levels of VEGF. We found that HLG dramatically increased myosin light chain 2 (MLC2) phosphorylation in RBE4 cells, which was significantly reduced by adropin treatment. We also found that HLG significantly increased Rho-associated kinase (ROCK) activity, a critical upstream effector of MLC2 phosphorylation, and that adropin treatment attenuated that effect. These data indicate that treatment with adropin reduces endothelial cell permeability after HLG insult by inhibition of the ROCK-MLC2 signaling pathway. These promising findings suggest that adropin protects against endothelial barrier dysfunction during ischemic conditions.  相似文献   

20.
Vascular endothelial growth factor receptor-3 (VEGFR-3) is constitutively expressed in lymphatic vessels and transiently in endothelial cells of blood vessels during angiogenesis. Here we report that VEGFR-3 localizes in the caveolae membrane of endothelial cells and co-immunoprecipitates with caveolin-1. Caveolin-1 silencing or its depletion from the cell membrane by cholesterol increases VEGFR-3 autophosphorylation, suggesting that caveolin acts as a negative regulator of VEGFR-3 activity. Receptor activation induces caveolin-1 phosphorylation on tyrosine residues including tyrosine 14. Cell treatment with Src or Abl inhibitors PP2 or STI571, prior to receptor stimulation, affects caveolin-1 phosphorylation without affecting receptor autophosphorylation, suggesting that both Src and Abl are involved in VEGFR-3-dependent caveolin-1 phosphorylation. Caveolin-1 phosphorylation in Src/Fyn/Yes knockout cells demonstrated that Abl phosphorylates caveolin-1 independently from Src family members. These results suggest a functional interaction between VEGFR-3 and caveolin-1 to modulate endothelial cell activation during angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号