首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
RFLPs in the phenylalanine hydroxylase (PAH) gene locus were determined in 47 Norwegian nuclear families that had at least one child with phenylketonuria (PKU). The PKU haplotype distribution differed somewhat from that of other European populations. Mutant haplotype 7 is relatively rare in other populations but constituted 20% of all mutant haplotypes in Norway. In 14 of the 17 mutant haplotypes 7, a previously unreported deletion of the BamHI restriction site in exon 7 of the PAH gene was observed. The abrogation of the BamHI site was shown to be due to a G-to-T transversion, changing Gly 272 to Ter 272 in exon 7 of the gene, thus directly identifying the PKU mutation. Unlike the families of the other PKU patients, the families with this mutation clustered along the southeastern coast of Norway, suggesting a founder effect for this mutation.  相似文献   

2.
Summary The genetic heterogeneity at the phenylalanine hydroxylase (PAH) locus was studied in 88 families including 93 of the 105 children with phenylketonuria (PKU) or hyperphenylalaninemia (HPA) detected through the Swedish neonatal screening program from 1966 to the end of 1986. Haplotypes based on eight restriction fragment length polymorphisms (RFLPs) at the PAH locus could be constructed for 132 normal and 136 mutant alleles. The normal alleles were of 27 different RFLP haplotypes, 9 of which have not been described previously, but there was a dominance of a few haplotypes common to many European populations. The distribution of mutant alleles was significantly different from that in neighboring countries, even though over 90% of all mutant alleles were confined to six RFLP haplotypes, also prevalent in other European populations. Allele-specific oligonucleotide hybridization analysis for the Arg408 to Trp408 mutation and for the G to A splicing mutation in intron 12 showed exceptions to the previously reported linkage of these mutations to mutant haplotypes 2 and 3, respectively. Correlation of mutant alleles with clinical phenotypes pointed to the presence of at least two different mutations associated with each of six haplotypes. We argue that PKU/HPA in the Swedish population may be caused by at least 13 different mutations in addition to the 4 already identified. The theoretical informativity of RFLP analysis in heterozygote detection and prenatal diagnosis in PKU/HPA families was estimated at approximately 85%. Carrier detection could, in effect, be accomplished for 88% of the 56 healthy siblings in the families studied.  相似文献   

3.
DNA polymorphisms at the phenylalanine hydroxylase (PAH) locus have proved highly effective in linkage diagnosis of phenylketonuria (PKU) in Caucasian families. More than 10 RFLP sites have been reported within the PAH structural locus in Caucasians. With information from affected and unaffected offspring in PKU families it is often possible to reconstruct complete RFLP haplotypes in parents and to use these haplotypes to follow the segregation of PKU within families and to determine the distribution of PKU chromosomes within populations. To establish the utility of these RFLPs in characterizing Asian families with PKU, we typed eight DNA sites in 21 Chinese families and 12 Japanese families with classical PKU. The eight RFLPs were chosen for their informativeness in Caucasians. From these families we reconstructed a total of 91 complete PAH haplotypes, 44 from non-PKU chromosomes and 47 from PKU-bearing chromosomes. Although all eight marker sites are polymorphic in both Chinese and Japanese, there is much less haplotypic variation in Asians than in Caucasians. In particular, one haplotype alone, haplotype 4, accounts for more than 77% of non-PKU chromosomes and for more than 80% of PKU-bearing chromosomes. Haplotype 4 is also relatively common in Caucasians. The next most common Asian haplotype is 10 times less frequent than haplotype 4. By contrast, in many Caucasian populations the sum of the frequencies of the five most common haplotypes is still less than 80%, and several of the most common haplotypes are equally frequent. Even though the extent of haplotypic variation in Asians is severely limited, the few haplotypes that are found often differ at a number of RFLP sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary In 237 French families with cystic fibrosis (CF) restricted fragment length polymorphisms (RFLPs) were detected by two DNa probes, XV-2c and KM-19, which are tightly linked to the CF allele. As in other European populations linkage disequilibrium is found between the haplotype B (XV-2c, allele 1: KM-19, allele 2) and the CF allele. Linkage disequilibrium alters the probability that a person bearing a given haplotype is a carrier.  相似文献   

5.
为研究中国美利奴羊MHC-DRB1基因exon2单倍型与布鲁氏菌易感性的关联性,本实验采用PCR直接测序法对40例布鲁氏菌血清检测阳性和阴性个体MHC-DRB1 exon2的单核苷酸多态性(SNPs)进行检测,而后运用SHEsis在线软件对筛选的SNPs构建单倍型并进行单倍型关联分析.结果显示,在270 bp的序列内共检测到41个SNPs,经Hardy-Weinberg平衡检测筛选出符合条件的SNPs有29个,连锁不平衡发现9个连锁不平衡域,而且每个block中的SNPs两两之间存在强连锁不平衡.单倍型分析显示,由于连锁不平衡存在,仅构建9种单倍型,其中只有Hap8和Hap9两种单倍型在病例-对照组中比较差异有统计学意义(P0.05).  相似文献   

6.
Recurrent mutation in the human phenylalanine hydroxylase gene.   总被引:10,自引:6,他引:4       下载免费PDF全文
We report the identification of a missense mutation of Glu280 to Lys280 in the phenylalanine hydroxylase (PAH) gene of a phenylketonuria (PKU) patient in Denmark. The mutation is associated with haplotype 1 of the PAH gene in this population. This mutation has previously been found in North Africa, where it is in linkage disequilibrium with haplotype 38. While it is conceivable that this mutation could have been transferred from one haplotype background to another by a double crossover or gene conversion event, the fact that the mutation is exclusively associated with the two different haplotypes in the two distinct populations supports the hypothesis that these two PKU alleles are the result of recurrent mutations in the human PAH gene. Furthermore, since the site of mutation involves a CpG dinucleotide, they may represent hot spots for mutation in the human PAH locus.  相似文献   

7.
Multiple origins for phenylketonuria in Europe   总被引:1,自引:1,他引:0       下载免费PDF全文
Phenylketonuria (PKU), a disorder of amino acid metabolism prevalent among Caucasians and other ethnic groups, is caused primarily by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). PKU is a highly heterogeneous disorder, with more than 60 molecular lesions identified in the PAH gene. The haplotype associations, relative frequencies, and distributions of five prevalent PAH mutations (R158Q, R261Q, IVS10nt546, R408W, and IVS12n1) were established in a comprehensive European sample population and subsequently were examined to determine the potential roles of several genetic mechanisms in explaining the present distribution of the major PKU alleles. Each of these five mutations was strongly associated with only one of the more than 70 chromosomal haplotypes defined by eight RFLPs in or near the PAH gene. These findings suggest that each of these mutations arose through a single founding event that occurred within time periods ranging from several hundred to several thousand years ago. From the significant differences observed in the relative frequencies and distributions of these five alleles throughout Europe, four of these putative founding events could be localized to specific ethnic subgroups. Together, these data suggest that there were multiple, geographically and ethnically distinct origins for PKU within the European population.  相似文献   

8.
Summary Six restriction fragment length polymorphisms (RFLPs) of the gene are described. Three of these are in linkage disequilibrium. Hybridisation with sub-probes allowed localisation of the RFLPs to different regions of the gene.  相似文献   

9.
Two missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of an Italian phenylketonuria (PKU) patient. Both mutations occurred in exon 7 of the PAH gene, resulting in the substitution of Trp for Arg at amino acid 252 (R252W) and of Leu for Pro (P281L) at amino acid 281 of the protein. Expression vectors containing either the normal human PAH cDNA or mutant cDNAs were constructed and transfected into cultured mammalian cells. Extracts from cells transfected with either mutant construct showed negligible enzyme activity and undetectable levels of immunoreactive PAH protein as compared to the normal construct. These results are compatible with the severe classical PKU phenotype observed in this patient. Population genetic studies in the Italian population revealed that both the R252W and the P281L mutations are in linkage disequilibrium with mutant restriction fragment length polymorphism (RFLP) haplotype 1, which is the most prevalent RFLP haplotype in this population. The R252W mutation is present in 10% and the P281L mutation is present in 20% of haplotype 1 mutant chromosomes. These mutations are both very rare among other European populations, suggesting a Mediterranean origin for these mutant chromosomes.  相似文献   

10.
We determined the allelic (X+/X-, M+/M-, and E+/E-) distribution frequencies of the XbaI, MspI, and EcoRI restriction fragment length polymorphisms (RFLPs) in the apolipoprotein B gene in a control group of 374 healthy Chinese, Malays, and Indians and in a hyperlipidemic cohort of 131 Chinese patients. Covariability between the RFLPs and serum lipid, lipoprotein, and apolipoprotein concentrations was also studied. We found a lower frequency (average 0.0829) of the X+ allele and higher frequencies of the E+ (average 0.9452) and M+ (average 0.9772) alleles in our study population compared with frequencies reported in other populations. The 3 polymorphic sites did not contribute to significant variations in lipid levels (p > 0.1 in all cases). Also, there was no significant variation in genotype frequencies between the control subjects and the hyperlipidemic subjects. Despite their relative close proximity within the APOB gene sequence, the 3 polymorphic sites did not show any significant linkage disequilibrium. However, the presence of the X+ cutting site was in linkage disequilibrium with the Del allele of the 5' insertion-deletion polymorphism and the E-allele was in linkage disequilibrium with the 3' VNTR located near the 3' end of the coding region of the APOB gene.  相似文献   

11.
Spontaneous clearance of hepatitis C virus (HCV) occurs in ~30% of acute infections. Host genetics play a major role in HCV clearance, with a strong effect of single nucleotide polymorphisms (SNPs) of the IL28B gene already found in different populations, mostly infected with viral genotypes 1 and 3. Egypt has the highest prevalence of HCV infection in the world, which is mostly due to viral genotype 4. We investigated the role of several IL28B SNPs in HCV spontaneous clearance in an Egyptian population. We selected nine SNPs within the IL28B genomic region covering the linkage disequilibrium (LD) block known to be associated with HCV clearance in European populations. These SNPs were genotyped in 261 HCV-infected Egyptian subjects (130 with spontaneous clearance and 131 with chronic infection). The most associated SNPs were rs12979860 (P = 1.6 × 10(-7)) and the non-synonymous IL28B SNP, rs8103142 (P = 1.6 × 10(-7)). Interestingly, three SNPs at the two bounds of the region were monomorphic, reducing the size of the LD block in which the causal variants are potentially located to ~20 kilobases. HCV clearance in Egypt was associated with a region of IL28B smaller than that identified in European populations, and involved the non-synonymous IL28B SNP, rs8103142.  相似文献   

12.
A 3.5-kb segment of the alcohol dehydrogenase (Adh) region that includes the Adh and Adh-related genes was sequenced in 139 Drosophila pseudoobscura strains collected from 13 populations. The Adh gene encodes four protein alleles and rejects a neutral model of protein evolution with the McDonald-Kreitman test, although the number of segregating synonymous sites is too high to conclude that adaptive selection has operated. The Adh-related gene encodes 18 protein haplotypes and fails to reject an equilibrium neutral model. The populations fail to show significant geographic differentiation of the Adh-related haplotypes. Eight of 404 single nucleotide polymorphisms (SNPs) in the Adh region were in significant linkage disequilibrium with three ADHR protein alleles. Coalescent simulations with and without recombination were used to derive the expected levels of significant linkage disequilibrium between SNPs and 18 protein haplotypes. Maximum levels of linkage disequilibrium are expected for protein alleles at moderate frequencies. In coalescent models without recombination, linkage disequilibrium decays between SNPs and high frequency haplotypes because common alleles mutate to haplotypes that are rare or that reach moderate frequency. The implication of this study is that linkage disequilibrium mapping has the highest probability of success with disease-causing alleles at frequencies of 10%.  相似文献   

13.
We report missense mutations associated with haplotype 1 and haplotype 4 alleles of the human phenylalanine hydroxylase (PAH) gene. Individual exon-containing regions were amplified by polymerase chain reaction from genomic DNA of a PKU patient who was a haplotype 1/4 compound heterozygote. The amplified DNA fragments were subcloned into M13 for sequence analysis. Missense mutations were observed in exons 5 and 7, resulting in the substitution of Arg by Gln at residues 158 and 261 of the enzyme, respectively. Expression analysis in heterozygous mammalian cells after site-directed mutagenesis demonstrated that the Arg158-to-Gln158 mutation is a PKU mutation, whereas the Arg261-to-Gln261 mutation is apparently silent in the assay system. Hybridization analysis using allele-specific oligonucleotide probes demonstrated that the Arg158-to-Gln158 mutation is present in two of six mutant haplotype 4 alleles among the Swiss and constitutes about 40% of all mutant haplotype 4 alleles in the European population. The mutation is not present in normal alleles or in any mutant alleles of other haplotypes. The results provide conclusive evidence that there is linkage disequilibrium between mutation and haplotype in the PAH gene and that multiple mutations have occurred in the PAH gene of a prevalent haplotype among Caucasians.  相似文献   

14.
We report a mapping and linkage disequilibrium analysis of six restriction fragment length polymorphisms (RFLPs) of the human fibronectin gene. The polymerase chain reaction conditions are described for four of the RFLPs.  相似文献   

15.
PAH 399 GTA(Val)→GTT(Val), a new silent mutation found in the Chinese   总被引:1,自引:1,他引:0  
Summary A silent mutation or sequence polymorphism, an A to T substitution at codon 399 in exon 11 of the phenylalanine hydroxylase (PAH) gene has been identified by DNA sequence analysis in the Chinese. The frequencies of this new mutation in normal and abnormal (phenylketonuria; PKU) genes are 0.005 and 0.09, respectively, based on the analyses of 100 apparently normal individuals and 39 PKU patients, as demonstrated by DNA amplification with polymerase chain reaction (PCR) and oligonucleotide hybridization methods. The results suggest that there is linkage disequilibrium between this polymorphism and PKU mutations in the PAH gene; approximately 10% of defect PAH alleles in the Chinese population may be identified with this sequence polymorphic marker.  相似文献   

16.
The gene for human apolipoprotein C2 (APOC2), situated on the proximal long arm of chromosome 19, is closely linked to the gene for the most common form of adult muscular dystrophy, myotonic dystrophy (DM). Six APOC2 RFLPs (TaqI, BglI, BanI, BamHI, NcoI, and AvaII) have been identified to date. We have conducted a comprehensive DM linkage study utilizing all six RFLPs and involving 50 families and 372 individuals. The most informative RFLPs are, in descending order, NcoI (lod = 6.64, theta = 0.05), BglI (lod = 6.12, theta = 0.05), AvaII (lod = 6.02, theta = 0.03), BanI (lod = 5.76, theta = 0.04), TaqI (lod = 4.29, theta = 0.06), and BamHI (lod = 1.75, theta = 0.01). A substantial increase in the lod scores over those seen with the individual RFLPs was obtained when the linkage of the entire APOC2 haplotype (composed of the six RFLPs) was studied (lod = 17.87, theta = 0.04). We have observed significant inter-APOC2 RFLP linkage disequilibrium. Consequently, the three most informative RFLPs have been found to be BanI, TaqI, and either BglI, AvaII, or NcoI polymorphisms. We also demonstrate linkage disequilibrium between DM and APOC2 in our French-Canadian population (standardized disequilibrium constant phi = .22, chi 2 = 5.12, df = 1, P less than 0.04). This represents the first evidence of linkage disequilibrium between APOC2 and the DM locus.  相似文献   

17.
A recently described region on chromosome 2q contains seven restriction fragment length polymorphisms (RFLPs) revealed by single-copy probes isolated from a 20-kilobase (kb) segment of a single cosmid insert. Analysis of six of these loci demonstrates modest amounts of linkage disequilibrium. This reflects the presence of a substantial number of different haplotypes in this chromosome region and indicates that the region could be used as one highly polymorphic locus. No consistent relationship is found between the amount of linkage disequilibrium and the physical distance between pairs of loci. For seven of the 10 pairs of diallelic loci studied, the observed disequilibrium can be attributed primarily to the absence of the minor haplotype from the population. These results suggest that, for small regions of the genome, factors such as mutation, genetic drift, and population admixture may have effects that outweight those of recombination. In addition, results are reviewed which show that estimates of linkage disequilibrium coefficients for tightly linked loci are very imprecise. Thus, the inference of gene order from linkage disequilibrium values must be regarded with caution.  相似文献   

18.
Phenylketonuria (PKU) is a common metabolic disorder among Chinese, with a prevalence of about 1 in 16,500 births. This frequency is very similar to that among Caucasians. Individual exons of the phenylalanine hydroxylase (PAH) gene with flanking introns were amplified by polymerase chain reaction and cloned into M13 for sequence analysis. An Arg111-to-Ter111 mutation has been identified in exon 3 of the PAH gene in a Chinese PKU patient. The mutation is in linkage disequilibrium with the mutant haplotype 4 alleles which are the most prevalent haplotype among the Orientals. The mutation accounts for about 10% of the Chinese PKU alleles and is absent from the Caucasians, demonstrating that independent mutational events have occurred in the PAH locus after racial divergence.  相似文献   

19.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

20.
Single-nucleotide polymorphisms (SNPs) may be extremely important for deciphering the impact of genetic variation on complex human diseases. The ultimate value of SNPs for linkage and association mapping studies depends in part on the distribution of SNP allele frequencies and intermarker linkage disequilibrium (LD) across populations. Limited information is available about these distributions on a genomewide scale, particularly for LD. Using 114 SNPs from 33 genes, we compared these distributions in five American populations (727 individuals) of African, European, Chinese, Hispanic, and Japanese descent. The allele frequencies were highly correlated across populations but differed by >20% for at least one pair of populations in 35% of SNPs. The correlation in LD was high for some pairs of populations but not for others (e.g., Chinese American or Japanese American vs. any other population). Regardless of population, average minor-allele frequencies were significantly higher for SNPs in noncoding regions (20%-25%) than for SNPs in coding regions (12%-16%). Interestingly, we found that intermarker LD may be strongest with pairs of SNPs in which both markers are nonconservative substitutions, compared to pairs of SNPs where at least one marker is a conservative substitution. These results suggest that population differences and marker location within the gene may be important factors in the selection of SNPs for use in the study of complex disease with linkage or association mapping methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号