首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
耕作方式对潮土土壤团聚体微生物群落结构的影响   总被引:1,自引:0,他引:1  
为探究不同耕作方式对潮土土壤团聚体微生物群落结构和多样性的影响,采用磷脂脂肪酸(PLFA)法测定了土壤团聚体中微生物群落。试验设置4个耕作处理,分别为旋耕+秸秆还田(RT)、深耕+秸秆还田(DP)、深松+秸秆还田(SS)和免耕+秸秆还田(NT)。结果表明:与RT相比,DP处理显著提高了原状土壤和>5 mm粒级土壤团聚体中真菌PLFAs量和真菌/细菌,为真菌的繁殖提供了有利条件,有助于土壤有机质的贮存,提高了土壤生态系统的缓冲能力;提高了5~2 mm粒级土壤团聚体中细菌PLFAs量,降低了土壤革兰氏阳性菌/革兰氏阴性菌,改善了土壤营养状况;提高了<0.25 mm粒级土壤团聚体中微生物丰富度指数。总的来说,深耕+秸秆还田(DP)对土壤团聚体细菌和真菌生物量有一定的提高作用,并且在一定程度上改善了土壤团聚体微生物群落结构,有利于增加土壤固碳能力和保持土壤微生物多样性。冗余分析结果表明,土壤团聚体总PLFAs量、细菌、革兰氏阴性菌和放线菌PLFAs量与土壤有机碳相关性较强,革兰氏阳性菌PLFAs量与总氮相关性较强。各处理较大粒级土壤团聚体微生物群落主要受碳氮比、含水量、pH值和团聚体质量分数的影响,较小粒级土壤团聚体微生物群落则主要受土壤有机碳和总氮的影响。  相似文献   

2.
Summary The rate of nitrification by soil aggregates at pH 5.5 and 7.5 was examined by a perfusion technique. Nitrification occurred at both levels of H-ion concentration but at the higher pH the rate of nitrification was greater. The population estimates of nitrifying bacteria were correspondingly greater at the high pH. Once the pH was lowered from 7.5 to 5.5, the nitrification rate decreased slowly with a corresponding decrease in the numbers of nitrifying bacteria. The distribution of nitrifying bacteria throughout soil aggregates was homogenous. The lower limit of pH for nitrification was 4.3.  相似文献   

3.
The short term impact of 50 μM Hg(II) on soil bacterial community structure was evaluated in different microenvironments of a silt loam soil in order to determine the contribution of bacteria located in these microenvironments to the overall bacterial response to mercury spiking. Microenvironments and associated bacteria, designated as bacterial pools, were obtained by successive soil washes to separate the outer fraction, containing loosely associated bacteria, and the inner fraction, containing bacteria retained into aggregates, followed by a physical fractionation of the inner fraction to separate aggregates according to their size (size fractions). Indirect enumerations of viable heterotrophic (VH) and resistant (Hg(R)) bacteria were performed before and 30 days after mercury spiking. A ribosomal intergenic spacer analysis (RISA), combined with multivariate analysis, was used to compare modifications at the community level in the unfractionated soil and in the microenvironments. The spatial heterogeneity of the mercury impact was revealed by a higher increase of Hg(R) numbers in the outer fraction and in the coarse size fractions. Furthermore, shifts in RISA patterns of total community DNA indicated changes in the composition of the dominant bacterial populations in response to Hg(II) stress in the outer and in the clay size fractions. The heterogeneity of metal impact on indigenous bacteria, observed at a microscale level, is related to both the physical and chemical characteristics of the soil microenvironments governing mercury bioavailability and to the bacterial composition present before spiking.  相似文献   

4.
'Clay hutches': a novel interaction between bacteria and clay minerals   总被引:3,自引:0,他引:3  
Biofilm formation on a low-energy substratum floating on the surface of a water column overlying a polychlorinated biphenyl (PCB)-contaminated sandy clay soil was followed by light and electron microscopy. The biofilms that developed consisted of a dense lawn of clay aggregates, each one of which contained one or more bacteria, phyllosilicates and grains of iron oxide material, all held together by bacterial extracellular polysaccharides (EPS). The clay leaflets were arranged in the form of 'houses of cards' and gave the aggregates the appearance of 'hutches' housing the bacteria. Interestingly, although the soil is poor in carbon, and the weakly bioavailable PCBs constitute the principal source of carbon in this system, the bacteria contained electron-transparent structures presumed to be carbon storage granules. These, and the EPS material present in the hutches, indicate that carbon is not limiting in this system and, as PCBs have been found associated with the clay mineral fraction of the floating substratum, the clay particles may serve as carbon shuttles. The interesting possibilities that the 'clay hutches' may represent a 'soil microhabitat', a 'minimal nutritional sphere' and an 'effective survival unit' for autochthonous bacteria are noted. The formation of clay hutches by bacteria would seem to merit further investigation, particularly regarding their roles in bacterial processes in soil and in geological processes.  相似文献   

5.
Abstract: Possible effects on the physiological activity and culturability of soil microorganisms by different soil dispersion procedures, and effects on activity caused by extracting bacteria from soil, were investigated. There was no apparent difference in cfu's with dispersion of a silty loam soil and a loamy sand soil with pyrophosphate as compared to dispersion in NaCl. Substrate-induced respiration was reduced in the silty loam soil, and methanol oxidation was reduced in the loamy sand soil with dispersion in pyrophosphate, and the soil pH was irreversibly increased by the treatment. Extracted bacterial fractions had lower numbers of culturable cells as percentage of the total number of bacteria in each fraction, lower respiration rates and no methanol oxidation activity as compared to the soil slurry both before and after extraction. The physiological activity was apparently not affected by the number of cells extracted. This indicates that the increased extraction rate of indigenous soil bacteria obtained by effective disruption of aggregates and detachment of cells from surfaces, only results in increased extraction of cells that have been physiologically changed as a result of the extraction process.  相似文献   

6.
Abstract A soil bacterium, Sphingomonas paucimobilis , is known to be the only bacterium which can aerobically assimilate γ-1,2,3,4,5,6-hexachlorocyclohexane (γ-HCH). Indigenous γ-HCH-assimilating S. paucimobilis survives in the soil where γ-HCH has been annually applied since 1973. In contrast, γ-HCH-assimilating S. paucimobilis strain SS86 cannot survive when inoculated into the control soil, although it can multiply in the presence of γ-HCH. Micro-habitats of γ-HCH-assimilating S. paucimobilis indigenous or inoculated into the soils were identified by fractionation of the soils. When γ-HCH was added to the soil, indigenous γ-HCH-assimilating S. paucimobilis grew. Most of the growing indigenous bacteria were found in fractions smaller than 0.025 mm which corresponded to soil inter-aggregate pores, and died afterwards. However, the indegenous bacteria which survived for a long period were found mainly in fractions larger than 0.025 mm which contained soil aggregates. When γ-HCH-assimilating strain SS86 was inoculated, the bacteria were located in inter-aggregate pores and died quickly. Consequently, association of the bacteria with soil aggregates was suggested to be related to the long-term survival of γ-HCH-assimilating S. paucimobilis .  相似文献   

7.
Abstract The cell density and the genetic structure of bacterial subcommunities (further named pools) present in the various microenvironments of a silt loam soil were investigated. The microenvironments were isolated first using a procedure of soil washes that separated bacteria located outside aggregates (outer part) from those located inside aggregates (inner part). A nondestructive physical fractionation was then applied to the inner part in order to separate bacteria located inside stable aggregates of different size (size fractions, i.e., two macroaggregate fractions, two microaggregate fractions, and the dispersible day fraction). Bacterial densities measured by acridine orange direct counts (AODC) and viable heterotrophic (VH) cell enumerations showed the heterogeneous quantitative distribution of cells in soil. Bacteria were preferentially located in the inner part with 87.6% and 95.4% of the whole AODC and VH bacteria, respectively, and in the microaggregate and dispersible clay fractions of this part with more than 70% and 80% of the whole AODC and VH bacteria, respectively. The rRNA intergenic spacer analysis (RISA) was used to study the genetic structure of the bacterial pools. Different fingerprints and consequently different genetic structures were observed between the unfractionated soil and the microenvironments, and also among the various microenvironments, giving evidence that some populations were specific to a given location in addition to the common populations of all the microenvironments. Cluster and multivariate analysis of RISA profiles showed the weak contribution of the pools located in the macroaggregate fractions to the whole soil community structure, as well as the clear distinction between the pool associated to the macroaggregate fractions and the pools associated to the microaggregate ones. Furthermore, these statistical analyses allowed us to ascertain the influence of the clay and organic matter content of microenvironments on the genetic structure relatedness between pools. Received: 15 December 1999; Accepted: 5 April 2000; Online Publication: 19 May 2000  相似文献   

8.
Distribution of microorganisms in soil aggregates: Effect of aggregate size   总被引:2,自引:0,他引:2  
The distribution of microorganisms in soil aggregates with different diameters was determined using a “washing and sonic vibration” method. In humic rendzina the number of bacteria, actinomycetes and fungi located in aggregates measuring 3 to 1 and ≤0.5 mm was greater than in those of 7 to 5 mm.Pseudomonas were more numerous in aggregates of ≤0.5 mm than in those of 3 to 1 mm and spore-forming aerobic bacteria—in aggregates measuring 3 to 1 mm than in those of 7 to 5 mm. The number of microorganisms growing on asparagine agar andArthrobacter-Corynebacterium increased as 7-5<3-1<0.5 and 7-5<0.5<3-1 mm, respectively. In podzolic loess spore-forming aerobic bacteria inhabited preferentially aggregates measuring 7 to 5 mm,Arthrobacter-Corynebacterium aggregates of ≤0.5 mm. The number of bacteria was greater in aggregates of 3 to 1 than in those measuring ≤0.5 mm. Aggregates of various diameters differed also in the number of some microorganisms both in the outer and inner parts and the partition ratio of microorganisms between these parts. Differences were more numerous in the humic rendzina aggregates.  相似文献   

9.
氮素添加对贝加尔针茅草原土壤团聚体微生物群落的影响   总被引:1,自引:0,他引:1  
李明  赵建宁  秦洁  祁小旭  红雨  杨殿林  洪杰 《生态学报》2021,41(3):1127-1137
大气氮沉降增加作为全球气候变化的重要因素,其对土壤生态系统影响的研究受到了生态学家的广泛关注。土壤微生物是有机物分解和养分循环的主要参与者,在维持土壤的功能多样性和可持续发展方面发挥着重要的作用。氮沉降的激增会引起土壤微生物群落结构和功能的改变。土壤中营养物质在不同团聚体组分中分布的不均匀,为微生物提供了空间异质微生境。为揭示草原土壤不同粒径团聚体中微生物群落分布及其对氮素添加响应特征。自2010年起,在内蒙古贝加尔针茅草原典型地段设置N0(0 kg hm-2 a-1)、N15(15 kg hm-2 a-1)、N30(30 kg hm-2 a-1)、N50(50 kg hm-2 a-1)、N100(100 kg hm-2 a-1)、N150(150 kg hm-2 a-1)6个氮素添加处理模拟氮沉降野外控制试验。采用磷脂脂肪酸(phospholipid fatty acid,PLFA)法测定>2 mm、0.25-2 mm和<0.25 mm 3个粒径土壤团聚体中微生物PLFA含量,探讨氮素添加对土壤团聚体微生物群落结构的影响。结果表明:氮素添加提高了土壤碳、氮含量,降低了土壤pH。氮素添加显著提高了0.25-2 mm土壤团聚体微生物群落磷脂脂肪酸总量、真菌磷脂脂肪酸含量和真菌/细菌(Fungi/bacteria,F/B)、革兰氏阳性菌/革兰氏阴性菌(Gram-positive bacteria/gram-negative bacteria,G+/G-)的比值(P<0.05),降低了土壤团聚体微生物Margalef丰富度指数(P<0.05)。相关性分析表明,土壤团聚体微生物总PLFAs、真菌PLFAs含量、G+/G-、F/B与土壤有机碳、全氮含量呈显著正相关关系,与C/N值负相关。综合研究表明,连续8年氮素添加显著提高了土壤有机碳和全氮含量、降低了土壤pH;提高了0.25-2 mm土壤团聚体真菌群落,土壤有机碳、全氮的固持与真菌群落的增加有关。  相似文献   

10.
In this study, we investigated the impact of organic and mineral fertilizers on the community composition of arbuscular mycorrhizal (AM) fungi and bacteria in the mycorrhizosphere of maize in a field experiment established in 1956, in south-east Sweden. Roots and root-associated soil aggregates were sampled four times during the growing season in 2005, in control plots and in plots amended with calcium nitrate, ammonium sulphate, green manure, farmyard manure or sewage sludge. Fungi in roots were identified by cloning and sequencing, and bacteria in soil aggregates were analysed by terminal-restriction fragment length polymorphism, cloning and sequencing. The community composition of AM fungi and bacteria was significantly influenced by the different fertilizers. Changes in microbial community composition were mainly correlated with changes in pH induced by the fertilization regime. However, other factors, including phosphate and soil carbon content, also contributed significantly to these changes. Changes in bacterial community composition and a reduction in bacterial taxon richness throughout the growing season were also manifest. The results of this study highlight the importance and significant effects of the long-term application of different fertilizers on edaphic factors and specific groups of fungi and bacteria playing a key role in arable soils.  相似文献   

11.
Pankhurst  C.E.  Pierret  A.  Hawke  B.G.  Kirby  J.M. 《Plant and Soil》2002,238(1):11-20
Some agricultural soils in South Eastern Australia with duplex profiles have subsoils with high bulk density, which may limit root penetration, water uptake and crop yield. In these soils, a large proportion (up to 80%) of plant roots maybe preferentially located within the macropores or in the soil within 1–10 mm of the macropores, a zone defined as the macropore sheath (MPS). The chemical and microbiological properties of MPS soil manually dissected from a 1–3 mm wide region surrounding the macropores was compared with that of adjacent bulk soil (>10 mm from macropores) at 4 soil depths (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm). Compared to the bulk soil, the MPS soil had higher organic C, total N, bicarbonate-extractable P, Ca+, Cu, Fe and Mn and supported higher populations of bacteria, fungi, actinomycetes, Pseudomonas spp., Bacillus spp., cellulolytic bacteria, cellulolytic fungi, nitrifying bacteria and the root pathogen Pythium.In addition, analysis of carbon substrate utilization patterns showed the microbial community associated with the MPS soil to have higher metabolic activity and greater functional diversity than the microbial community associated with the bulk soil at all soil depths. Phospholipid fatty acids associated with bacteria and fungi were also shown to be present in higher relative amounts in the MPS soil compared to the bulk soil. Whilst populations of microbial functional groups in the MPS and the bulk soil declined with increasing soil depth, the differentiation between the two soils in microbiological properties occurred at all soil depths. Soil aggregates (< 0.5 mm diameter) associated with plant roots located within macropores were found to support a microbial community that was quantitatively and functionally different to that in the MPS soil and the bulk soil at all soil depths. The microbial community associated with these soil aggregates thus represented a third recognizable environment for plant roots and microorganisms in the subsoil.  相似文献   

12.
Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.  相似文献   

13.
Bivalves process large volumes of water, leading to their accumulation of bacteria, including potential human pathogens (e.g., vibrios). These bacteria are captured at low efficiencies when freely suspended in the water column, but they also attach to marine aggregates, which are captured with near 100% efficiency. For this reason, and because they are often enriched with heterotrophic bacteria, marine aggregates have been hypothesized to function as important transporters of bacteria into bivalves. The relative contribution of aggregates and unattached bacteria to the accumulation of these cells, however, is unknown. We developed an agent‐based model to simulate accumulation of vibrio‐type bacteria in oysters. Simulations were conducted over a realistic range of concentrations of bacteria and aggregates and incorporated the dependence of pseudofeces production on particulate matter. The model shows that the contribution of aggregate‐attached bacteria depends strongly on the unattached bacteria, which form the colonization pool for aggregates and are directly captured by the simulated oysters. The concentration of aggregates is also important, but its effect depends on the concentration of unattached bacteria. At high bacterial concentrations, aggregates contribute the majority of bacteria in the oysters. At low concentrations of unattached bacteria, aggregates have a neutral or even a slightly negative effect on bacterial accumulation. These results provide the first evidence suggesting that the concentration of aggregates could influence uptake of pathogenic bacteria in bivalves and show that the tendency of a bacterial species to remain attached to aggregates is a key factor for understanding species‐specific accumulation.  相似文献   

14.
A combination of the plant infection-soil dilution technique (most-probable-number [MPN] technique) and immunofluorescence direct count (IFDC) microscopy was used to examine the effects of three winter cover crop treatments on the distribution of a soil population of Rhizobium leguminosarum bv. trifolii across different size classes of soil aggregates (<0.25, 0.25 to 0.5, 0.5 to 1.0, 1.0 to 2.0, and 2.0 to 5.0 mm). The aggregates were prepared from a Willamette silt loam soil immediately after harvest of broccoli (September 1995) and before planting and after harvest of sweet corn (June and September 1996, respectively). The summer crops were grown in soil that had been either fallowed or planted with a cover crop of red clover (legume) or triticale (cereal) from September to April. The Rhizobium soil population was heterogeneously distributed across the different size classes of soil aggregates, and the distribution was influenced by cover crop treatment and sampling time. On both September samplings, the smallest size class of aggregates (<0.25 mm) recovered from the red clover plots carried between 30 and 70% of the total nodulating R. leguminosarum population, as estimated by the MPN procedure, while the same aggregate size class from the June sampling carried only approximately 6% of the population. In June, IDFC microscopy revealed that the 1.0- to 2.0-mm size class of aggregates from the red clover treatment carried a significantly greater population density of the successful nodule-occupying serotype, AR18, than did the aggregate size classes of <0.5 mm, and 2 to 5 mm. In September, however, the population profile of AR18 had shifted such that the density was significantly greater in the 0.25- to 0.5-mm size class than in aggregates of <0.25 mm and >1.0 mm. The populations of two other Rhizobium serotypes (AR6 and AS36) followed the same trends of distribution in the June and September samplings. These data indicate the existence of structural microsites that vary in their suitabilities to support growth and protection of bacteria and that are influenced by the presence and type of plant grown in the soil.  相似文献   

15.
Mechanisms and rates of bacterial colonization of sinking aggregates   总被引:3,自引:0,他引:3  
Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling frequency, and turn angles) and the hydrodynamic environment (stationary versus sinking aggregates). We then experimentally tested the models with 10 strains of bacteria isolated from marine particles: two strains were nonmotile; the rest were swimming at 20 to 60 microm s(-1) with different tumbling frequency (0 to 2 s(-1)). The rates at which these bacteria colonized artificial aggregates (stationary and sinking) largely agreed with model predictions. We report several findings. (i) Motile bacteria rapidly colonize aggregates, whereas nonmotile bacteria do not. (ii) Flow enhances colonization rates. (iii) Tumbling strains colonize aggregates enriched with organic substrates faster than unenriched aggregates, while a nontumbling strain did not. (iv) Once on the aggregates, the bacteria may detach and typical residence time is about 3 h. Thus, there is a rapid exchange between attached and free bacteria. (v) With the motility patterns observed, freely swimming bacteria will encounter an aggregate in <1 day at typical upper-ocean aggregate concentrations. This is faster than even starving bacteria burn up their reserves, and bacteria may therefore rely solely on aggregates for food. (vi) The net result of colonization and detachment leads to a predicted equilibrium abundance of attached bacteria as a function of aggregate size, which is markedly different from field observations. This discrepancy suggests that inter- and intraspecific interactions among bacteria and between bacteria and their predators may be more important than colonization in governing the population dynamics of bacteria on natural aggregates.  相似文献   

16.
A study was conducted to determine the location and distribution of PAH and PAH-degrading bacteria in different aggregate size fractions of an industrially polluted soil. The estimation of PAH-degrading bacteria using an MPN microplate technique indicated that these bacteria are most numerous in the aggregate size fractions corresponding to fine silt (2–20m) and clay(<2m) compared to larger fractions or unfractionated soil.PAH concentrations were also highest in the aggregate size fraction corresponding to fine silt. Similar results were found in a spiked soil (incubated for 6 months) with similar carbonated minerals. Transmission electron microscopy observations showed that the autochtonous PAH-degrading bacteria were embedded in the aggregates where PAHs were abundant. In spite of this extensive co-localisation PAH degradation was limited during 6 months incubation. This indicates that factors other than spatial distribution and PAH degrading ability control degradation rates. The fine silt fraction of the industrial soil had an elevated C/N ratio (35) compared to the clay fraction (C/N: 16). Thus the fraction which assumably had the highest specific surface area contained less PAH but similar numbers of PAH-degraders. N thus seem to play an important role in the long term, but as PAH degradation was low in fine size fractions, other sources/factors were probably limiting (easily degradable C, P org, O2 etc.). Based on these findings, soil particle organization and structure of soil aggregates appear to be important for the characterization of a polluted soil (localization and sequestration). Manipulations that modify aggregation in polluted soils could thus potentially influence the accessibility and biodegradability of PAHs.  相似文献   

17.
Colonization at sugar beet root surfaces by seedling-inoculated biocontrol strain Pseudomonas fluorescens DR54 and native soil bacteria was followed over a period of 3 weeks using a combination of immunofluorescence (DR54-targeting specific antibody) and fluorescence in situ hybridization (rRNA-targeting Eubacteria EUB338 probe) techniques with confocal laser scanning microscopy. The dual staining protocol allowed cellular activity (ribosomal number) to be recorded in both single cells and microcolonies of strain DR54 during establishment on the root. After 2 days, the population density of strain DR54 reached a constant level at the root basis. From this time, however, high cellular activity was only found in few bacteria located as single cells, whereas all microcolony-forming cells occurring in aggregates were still active. In contrast, a low density of strain DR54 was observed at the root tip, but here many of the bacteria located as single cells were active. The native population of soil bacteria, comprising a diverse assembly of morphologically different forms and size classes, initiated colonization at the root basis only after 2 days of incubation. Hence the dual staining protocol allowed direct microscopic studies of early root colonization by both inoculant and native soil bacteria, including their differentiation into active and non-active cells and into single or microcolony-forming cells.  相似文献   

18.
Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling frequency, and turn angles) and the hydrodynamic environment (stationary versus sinking aggregates). We then experimentally tested the models with 10 strains of bacteria isolated from marine particles: two strains were nonmotile; the rest were swimming at 20 to 60 μm s−1 with different tumbling frequency (0 to 2 s−1). The rates at which these bacteria colonized artificial aggregates (stationary and sinking) largely agreed with model predictions. We report several findings. (i) Motile bacteria rapidly colonize aggregates, whereas nonmotile bacteria do not. (ii) Flow enhances colonization rates. (iii) Tumbling strains colonize aggregates enriched with organic substrates faster than unenriched aggregates, while a nontumbling strain did not. (iv) Once on the aggregates, the bacteria may detach and typical residence time is about 3 h. Thus, there is a rapid exchange between attached and free bacteria. (v) With the motility patterns observed, freely swimming bacteria will encounter an aggregate in <1 day at typical upper-ocean aggregate concentrations. This is faster than even starving bacteria burn up their reserves, and bacteria may therefore rely solely on aggregates for food. (vi) The net result of colonization and detachment leads to a predicted equilibrium abundance of attached bacteria as a function of aggregate size, which is markedly different from field observations. This discrepancy suggests that inter- and intraspecific interactions among bacteria and between bacteria and their predators may be more important than colonization in governing the population dynamics of bacteria on natural aggregates.  相似文献   

19.
土壤微生物生物量在团聚体中的分布以及耕作影响   总被引:7,自引:1,他引:6  
陈智  蒋先军  罗红燕  李楠  李航 《生态学报》2008,28(12):5964-5969
了解土壤微生物在土壤结构体内部的分布对于预测相关的土壤生物化学过程具有重要意义。由于气候、土壤以及耕作的影响,该领域的研究结果存在很大的空间和时间变异,因此有待进行更多的在不同气候和土壤类型下的研究。首次报道亚热带紫色水稻土中微生物生物量在长期不同耕作方式的土壤中不同水稳性团聚体中的分布特征。结果表明微生物生物量在紫色水稻土水稳定性团聚体中的分布模式决定于土壤结构本身,而耕作方式的影响不显著;微生物生物量碳在不同粒级土壤团聚体中无显著性差异,微生物生物量氮与可溶性有机碳在0.25~0.053mm微团聚体中含量最高;垄作免耕显著提高土壤团聚体中的微生物生物量及可溶性有机碳含量,而对微生物生物量及可溶性有机碳在土壤团聚体中的分布模式无显著影响。  相似文献   

20.
微生物产生的胞外多糖(exopolysaccharides, EPS)可促进大粒径土壤团聚体形成,高产EPS的菌株在土壤改良、促进作物生长方面具有较好的应用前景。【目的】从土壤样品中筛选高产胞外多糖的细菌,研究其在土壤改良、环境适应性、广谱抗病等方面的功能,为制备土壤改良型功能菌剂提供候选菌株。【方法】采用蒽酮硫酸法测定菌株胞外多糖的产量,通过形态学观察、生理生化试验及16S rRNA基因序列测定确定其分类地位,结合土壤培养试验研究菌株对土壤团聚体形成的影响。【结果】获得3株胞外多糖产量大于500 mg/L的细菌,经鉴定A-5为地衣芽孢杆菌(Bacillus licheniformis),XJ-3为萎缩芽孢杆菌(Bacillus atrophaeus),KW3-10为耐盐芽孢杆菌(Bacillus halotolerans)。菌株A-5、XJ-3、KW3-10处理后,土壤大团聚体(>0.25 mm)含量较对照分别提高了4.07、2.14和3.16倍。3株菌株对疮痂链霉菌(Streptomyces scabies)、尖孢镰刀菌(Fusarium oxysporum)、茄链格孢菌(Alternaria solani)和立枯丝核菌(Rhizoctonia solani)等多种植物病原菌具有明显的抑制效果,可耐受pH为5-9和NaCl含量1%‒9%的盐碱环境,促进植物生长,其中KW3-10的代谢产物中IAA含量为25.58 mg/L。【结论】菌株A-5、XJ-3、KW3-10可显著促进土壤团粒结构形成,具有较好的广谱抗病性和促生长特性,可作为高效复合功能菌剂的候选菌株。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号