首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant hormones such as cytokinins and gibberellins are able to inhibit leaf yellowing in different species of cut flowers and potted plants. These hormones can be used alone or in combination among them for preserving chlorophyll in floriculture items. In the present study thidiazuron was tested alone or combined with GA3 for delaying leaf yellowing of cut stock flowers during vase life. Cut flowers were placed in a controlled environment and treated for 24 hours with the following solutions: distilled water (control) or solutions containing 5, 10 μM thidiazuron (TDZ), 0.5 mM gibberellic acid (GA3), or a combination of 0.5 mM GA3 with 5 μM TDZ. The effect of treatments was evaluated by measuring chlorophyll content, ethylene production, leaf gas exchanges and chlorophyll a fluorescence. Results showed that TDZ was able to delay leaf yellowing in light during whole experimental period (30 days). The effect of TDZ on dark stored flowers was less effective, and also delayed chlorophyll losses for 10–12 days. TDZ and GA3 combination did not show any synergistic nor beneficial effect. Gas exchange values such as net photosynthesis, vapour pressure deficit, stomatal conductance and water use efficiency were higher in the TDZ only treatment.  相似文献   

2.
Chlorophyll loss in leaves of cut flowers of alstroemeria (Alstroemeria pelegrina L. cv. Westland) was rapid in darkness and counteracted by irradiation and treatment of the flowers with gibberellic acid (GA3). The mechanism of the effect of GA3 under dark conditions was investigated. The content of various carbohydrates in the leaves under dark conditions rapidly decreased; this was not influenced by treatment with GA3. indicating that the loss of carbohydrates in the leaves did not induce the loss of chlorophyll. Placing the cut flowers in various solutions of organic and inorganic nutrients exhibited no significant effect on the retention of chlorophyll in leaves of dark-senescing flowers. The total nitrogen content in leaves of dark-senescing cut flowers decreased with time. Leaves of GA3-treated flowers retained more nitrogen. In contrast, the buds of GA3-treated flowers retained less nitrogen during senescence in the dark than control buds. To investigate whether GA3 affects export of assimilates from the leaf to various parts of control and GA3-treated flowers, we labelled one leaf with radioactive carbon dioxide. 14C-assimilates accumulated preferentially in the flowers, in which the relative specific activity of the youngest floral buds was highest. No significant differences were observed in the distribution of 14C-labelled compounds between the buds of control and GA3-treated flowers. To establish the importance of source-sink relations for the loss of leaf chlorophyll we removed the flower buds (i. e. the strongest sink) from the cut flowers. This removal only slightly delayed chlorophyll loss as compared to the large delay caused by GA3-treatment. In addition, detached leaf tips exhibited chlorophyll loss in the dark, which was delayed by GA3-treatment in a fashion comparable with that in flowers. Together these data demonstrate that interactions of the leaves with other plant organs are not essential for chlorophyll loss during senescence in the dark. Additionally, we have found no evidence that GA3 delays the loss of chlorophyll by affecting the transport of nutrients within the cut flowers.  相似文献   

3.
The contents of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA), and cytokinins were determined in ovules of normal cotton (Tm-1) and a kind of fiber differentiation mutant (Xin) before and after flowering by enzyme-linked immunosorbent assays. It was found that 24 h before flowering, a peak of IAA content was observed in ovules of Tm-1, whereas in ovules of Xin, a low level of IAA was determined. From –1 day (1 day before flowering) to +3 days (3 days after flowering), GA1+3 levels in ovules of Xin were 40–70% lower than those of Tm-1; GA4+7 levels were very low, and there was no visible difference in GA4+7 content between normal and mutant cotton. The ABA content in ovule of Tm-1 decreased by 70% 3 days after flowering, whereas that of Xin only decreased by 20%. The levels of cytokinins in ovules of Tm-1 decreased after flowering, and those of Xin kept up a steady increase.Abbreviations IAA indole-3-acetic acid - GA gibberellin - ABA abscisic acid - ELISA enzyme-linked immunosorbent assay - FW fresh weight - PBS phosphate-buffered saline - iPA isopentenyladenosine - ZR zeatin riboside - DHZR dihydrozeatin riboside - CTK cytokinin  相似文献   

4.
Changes in gibberellins (GAs), indole-3-acetic acid (IAA), and cytokinins associated with the transition from vegetative growth to reproductive growth in Humulus lupulus L. buds and leaves harvested at fortnight intervals were studied. During vegetative growth, GA1 increased gradually and the lowest content was observed during flower development. Both GA3 and GA4 showed a dramatic increase in the samples taken from the apical part of axillary branches from plants 4–5 m high, which corresponds to the maximum vegetative development prior to macroscopically visible inflorescences. Notable increases in the cytokinins trans-zeatin (t-Z), isopentenyladenine (iP), and the riboside and ribotide forms of iP were also obtained. The auxin, indole-3-acetic acid, was the most abundant plant hormone, and its content was highest during vegetative growth. These results show for the first time a relationship between endogenous hormone profiles and both vegetative and reproductive development in hop plants, which may be relevant for future research on the control of the flowering by exogenous hormone applications.  相似文献   

5.
The fern Asplenium nidus L. is in great demand as an ornamental plant. The aim of this work was to investigate the influence of phytohormones in promoting a gametophytic and sporophytic growth in homogenized sporophytes tissue. Exogenous application of 0.5 and 5 μM N 6-benzyladenine, 0.05 and 0.5 μM indole-3-acetic acid (IAA), and 0.3 and 3 μM gibberellic acid (GA3) favoured sporophyte regeneration, whereas gametophyte regeneration took place when plant material was cultured in a hormone-free liquid MS medium. The endogenous contents of the auxin IAA, the cytokinins trans-zeatin, trans-zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyladenine and isopentenyladenosine, and the gibberellins GA1, GA3, GA4, GA7, GA9 and GA20 in growing gametophytes and sporophytes were evaluated. Similar levels of the auxin and cytokinins and qualitative differences in the gibberellins were found between both generations.  相似文献   

6.
Leaf yellowing is a major problem in Alstroemeria and absence of leaf senescence symptoms is an important quality attribute. Two Alstroemeria cultivars ‘Yellow King’ and ‘Marina’ were sourced from a commercial farm and harvested when sepals began to reflex. Stems were re-cut under water and kept in vase solutions of gibberellin A4+7 (0, 2.5, 5.0, 7.5, 10.0, 12.5 or 15.0 mg l−1 [Provider]). Treatments and cultivars were combined in a factorial fashion and arranged in a completely randomised design. Application of GA4+7 in the holding solution at 2.5–10.0 mg l−1 significantly delayed the onset of leaf senescence by around 7 days and significantly increased days to 50% petal fall by ca. 2 days. Additionally, these GA4+7 concentrations resulted in higher retention of leaf nitrogen, leaf chlorophyll and also increased leaf water content, while reducing leaf dry weight, all relative to untreated controls. Cultivar ‘Yellow King’ had significantly longer vase life and a better retention of leaf quality than ‘Marina’. Our results suggest that a concentration of 10 mg l−1 GA4+7 can be used to prolong vase life, delay leaf senescence and enhance post-harvest quality of Alstroemeria cut flowers during their transport to market.  相似文献   

7.
Following harvest, Kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruits were variously treated with gibberellins (GA) and cytokinins. Ethylene caused marked chlorophyll (Chl) degradation and its effect was partially reversed by kinetin and benzylaminopurine (BAP) and to a lesser extent by GA3 and GA4+7. No appreciable accumulation of carotenoids (Car) occurred in these fruits irrespective of treatment. The loss of Chl during natural maturation was significantly reduced by cytokinins. Treatments with gibberellins alone or in combination with cytokinins were much less effective. The reduced loss of Chl in response to exogenously applied cytokinins may be probably related to a decline in its endogenous levels.  相似文献   

8.
Kinetin at 10 mg l–1 increased the number of flowers produced on Rosa damascena plants while GA3 inhibited flowering. In the leaves of non-flowering plants GA-like activity was high while specific cytokinin activity (fraction-II) was significantly higher in flowering plants. A novel compound 10- methyldihydrozeatin riboside and isopentenyl-adenine were identified from TLC fraction-II while TLC fraction-I yielded zeatin and 2-hydroxy-6-methylaminopurine.Abbreviations TLC thin layer chromatography - BA N6-benzyladenine - GA3 gibberellic acid CIMAP communication No. 92-40J  相似文献   

9.
Abstact The three plant types ofAmaranthus namely,A. caudatus f.albiflorus, A. caudatus f.caudatus andA. tricolor var.tristis are qualitative short day plants with critical photoperiods 16.0, 15.5 and 15.0 h, respectively. Gibberellins A3, A4+7 and A13 affect extension growth, leaf differentiation and floral induction differently. Thus, in all the three plant types ofAmaranthus, whereas, GA3 and G4+7 enhanced extension growth, GA13 was completely ineffective under both, 24- and 8-h photoperiods. None of the three gibberellins could affect the leaf differentiation. In all the three plant types, flowering was promoted by GA13 and not by other gibberellins tried. GA13 caused promotion was manifested in two manners, firstly by lowering the critical dark period requirement in each inductive cycle, and secondly by shortening the total period taken for the initiation of inflorescence primordia under inductive photoperiods. The floral induction by gibberellins inAmaranthus is contrary to the gibberellin-anthesin concept of Chailakhyan. It is suggested that gibberellins other than GA3 may be playing an important role in floral morphogenesis of short day plants.  相似文献   

10.
Inclusion of IAA in the vase water had little effect on leaf yellowing in cut flowering branches of Alstroemeria pelegrina L. while kinetin delayed leaf yellowing at 10–4M (continuous treatment). Chlorophyll was effectively retained by 10–7M gibberellic acid (GA) in the vase water or by a 20h pulse at 5°C with 10–5/10–4M GA. After 16h of 14C-GA3 uptake at 20°C relatively high levels of 14C were found in leaves and low levels in stems and flowers. After this treatment about half of the 14C-GA3 in leaves was metabolized into unknown compounds.  相似文献   

11.
The torosa-2 tomato mutant is characterized by a strong inhibition of release of axillary shoots, that is not under the control of the main apex and IAA. Microscopic examination indicated that about 70% of leaf axils do not have axillary buds. Of the growth regulators tested, gibberellic acid and cytokinins were able to modify the to-2 phenotype: increasing bud number (GA3 treated) and developing shoots (both substances). Sequential application of growth regulators demonstrated that bud production was only affected by treatments given between sowing time and 32 days after germination. Grafting experiments indicated that endogenous root factors have no essential role in the lateral branching of the genotypes investigated. The control of axillary bud differentiation and the branching pattern in the to-2 appears to be dependent of a complex mechanism involving gibberellins and cytokinins.  相似文献   

12.
The floral transition includes a complex system of factors that interact and involve various biochemical signals, including plant growth regulators. The physiological signals involved in the control of the floral transition have been sparsely studied and mainly in plant species whose genetics are poorly known. In this work, the role of polyamines, gibberellins, and cytokinins was investigated by analyzing their endogenous content in vegetative and floral buds of azalea. The results showed that there is a clear distinction between floral and vegetative buds with respect to the levels of these plant hormones, with floral buds containing higher amounts of conjugated polyamines, gibberellins (GAs) from the non-13-hydroxylation pathway (GA9, GA7, and GA4), and cytokinins (particularly isopentenyl-type species), and vegetative buds containing higher amounts of free polyamines and gibberellins from the early 13-hydroxylation pathway and fewer cytokinins. In conclusion, there is a specific pattern of endogenous hormone profiles in both vegetative and floral bud development in azalea, which may be relevant for future research on the control of flowering by exogenous hormone applications.  相似文献   

13.
Summary The level of endogenous gibberellins (GAs) in leaf tissue of Taraxacum officinale was high during leaf growth and expansion but declined progressively during leaf senescence. In the chromatographic system used, most of the GA from Taraxacum leaves moves with the Rf of GA3. However, several other GAs were also effective in retarding senescence in Taraxacum leaves. It is concluded that ageing of dandelion leaves is associated with a deficiency of endogenous GA.  相似文献   

14.
In order to investigate the possibility that cytokinins control transpiration indirectly through affecting leaf senescence, a direct comparison was made of the effect of different cytokinins on transpiration and senescence of oat leaves (Avena sativa L. cv. Forward). Senescence was assessed by measuring chlorophyll loss. The synthetic cytokinins N6 benzyladenine (BA) and kinetin delayed senescence and increased transpiration of oat leaves to a greater extent than did the naturally occurring compounds zeatin, Nb2 isopentenyladenine (i6 Ade) and 6-ø-hydroxybenzyladenosine (hyd-BA riboside). During the early stages of the transpiration experiment zeatin showed similar or greater activity than BA. This period was longest when freshly excised leaves were used, was reduced when leaves were used after incubation in distilled water in the dark for 20 h and was eliminated by incubation in cytokinin solution in the dark. After this period the activity of zeatin declined relative to BA. The effect of cytokinins in increasing transpiration occurred only in the light; no effect was observed in the dark. BA showed higher activity than zeatin in senescence tests but both cytokinins were less effective as the tests progressed, this decrease in activity being more rapid when older leaves were used. The results are discussed in relation to the mechanisms by which endogenous cytokinins might control sensecence and transpiration in oat leaves and to the value of the oat leaf senscence and transpiration bioassays as tests for cytokinin activity of plant extracts.  相似文献   

15.
The interrelationship between ethylene and growth regulators in the senescence of romaine lettuce (Lactuca sativa L.) leaves was studied. Gibberellic acid (GA3), kinetin, and 3-indoleacetic acid (IAA) retarded chlorophyll loss from leaf discs which were floated on hormone solutions. Abscisic acid (ABA) and ethephon enhanced chlorophyll loss and antagonized the senescence-retarding effect of GA3 and kinetin. A high concentration of IAA (10–4 M) caused accelerated chlorophyll loss, whereas a similar concentration of kinetin neither retarded nor promoted chlorophyll loss. The ineffectiveness of IAA and kinetin at their supraoptimal concentrations in retarding leaf senescence was related to increased production of ethylene induced in the treated leaf discs. GA3 was the most effective in retarding chlorophyll loss and did not stimulate ethylene production at all. The senescence-enhancing effect of ABA was not mediated by ethylene. However, the moderately increased production of ethylene, induced by relatively high concentrations of ABA, could act synergistically with the latter to accelerate chlorophyll loss. It is proposed that the effectiveness of exogenously applied hormones, both in enhancing and retarding senescence, is greatly affected by the endogenous ethylene concentration of the treated plant tissue.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 2571-E, 1988 series.  相似文献   

16.
Knowledge of ripeness and regulation of postharvest processes is an important tool to prevent loss of commercial value in both fruit and cut flower markets. The joint analysis of hormones and vitamin E levels can reveal complex interactions between hormones and oxidative stress as key regulators of postharvest processes. Profiling of both groups of metabolic compounds was performed during the ripening of non-climacteric fruits (red raspberry, Rubus idaeus L.) and senescence of ethylene-insensitive flowers (Dutch Iris, Iris x hollandica L.). After an initial extraction of the sample, without further purification steps, the hormonal profile was analyzed by UPLC-MS/MS and vitamin E levels were measured by HPLC. This methodological approach was very fast and had enough sensitivity for the analysis of small samples. Raspberry fruit maturation was characterized by a decline of cytokinin levels [zeatin, zeatin riboside, 2-isopentenyl adenine, and isopentenyl adenosine (Z, ZR, 2-iP, and IPA, respectively)] and gibberellins (GA1 in particular). Exogenous application of ABA prevented δ-tocopherol loss during fruit ripening. Iris floral senescence was also under strict hormonal control, also mediated by cytokinins and gibberellins. Z, ZR, 2-iP, GA9, and GA24 levels decreased in inner tepals, whereas the level of IPA decreased in style-merged-to-stigma tissues, thus suggesting tissue-specific roles for different hormones. α-Tocopherol levels decreased during senescence of inner tepals, hence suggesting enhanced oxidative stress. In conclusion, the rapid and sensitive hormonal and vitamin E profiling presented here can help in understanding the key physiological processes underlying fruit ripening and floral senescence.  相似文献   

17.
The biological activity and metabolism of applied GA1 and GA4 were studied in leaves of alstroemeria (Alstroemeria hybrida). It appeared that GA4 was 2 orders of magnitude more active in delaying leaf senescence than GA1. GA3-13-OMe, a GA analog that cannot be hydroxylated on the 13-C position, also retarded chlorophyll loss, although less efficiently. Tritiated and deuterated GA1, GA4, and GA9 were applied to leaves, and their metabolites were analyzed. According to high performance liquid chromatography and gas chromatography-mass spectrometry analyses, GA9 was converted into GA4 and GA34, and GA4 was converted into GA34 and more polar components. No evidence was found for the conversion of both GA9 and GA4 into GA1, even at the relatively high concentrations that were taken up by the leaf. The results strongly suggest that GA4 is recognized directly by a receptor involved in regulation of leaf senescence in alstroemeria. Received November 24, 1997; accepted February 17, 1998  相似文献   

18.
Inclusion of IAA in the vase water had little effect on leaf yellowing in cut flowering branches of Alstroemeria pelegrina L. while kinetin delayed leaf yellowing at 10-4M (continuous treatment). Chlorophyll was effectively retained by 10-7M gibberellic acid (GA) in the vase water or by a 20h pulse at 5°C with 10-5/10-4M GA. After 16h of 14C-GA, uptake at 20°C relatively high levels of 14C were found in leaves and low levels in stems and flowers. After this treatment about half of the 14C-GA, in leaves was metabolized into unknown compounds. Corrigendum. Owing to an error in the proofreading process, the article was published incorrectly. The article as it should have been published is presented here.  相似文献   

19.
The endogenous levels of abscisic acid (ABA), cytokinins (CKs) and gibberellins (GA1/GA3 combined) in Leucospermum glabrum embryos were monitored in axes and cotyledons separately during normal germination. Plant growth substance changes were correlated with known morphological, structural and ultrastructural events in the embryo of Proteaceae. The effect of exogenous application of 6-benzyladenine (BA) and GA4+7 under three known dormancy-enforcing environmental conditions were studied in L. glabrum and L. cordifolium. The endogenous levels of the hormone classes GAs and CKs changed phasically during normal germination under a single alternating temperature regime. GA1/GA3 levels increased in cotyledons within 3 d of hydration while at the same time initial CK levels decreased. Following this transient peak GAs fell to a low level throughout the germinative period. Subsequently the CKs, Z and ZR, and to a lesser extent their dihydro-derivatives, appeared in both the axes and the cotyledons as fluctuating, transient peaks. Early increases in GAs are thought to control the induction of the germination process. The CK pattern suggests that CKs control at least three major processes of germination sensu stricto following induction: 1) early mobilization of protein and lipid reserves in the axis and later in cotyledons, 2) cotyledon expansion which causes the endotesta to split permitting radicle protrusion and 3) later, radicle growth.Our results indicate that dormancy in intact Leucospermum seeds is enforced by embryo anoxia, regulated by the impermeable exotesta. In addition synthesis of or tissue sensitizing to both hormone classes GAs and CKs depends on moderately low temperature as the primary environmental requirement. For GA synthesis a secondary, daily pulse of high temperature is required. Inhibitory hormones, specifically ABA, appear not to play a role.Abbreviations ABA Abscisic acid - BA 6-benzyladenine - CK Cytokinin - DHZ Dihydrozeatin - DHZR Dihydrozeatin riboside - GA Gibberellin - HPLC High performance liquid chromatography - iP Isopentenyladenine - IPA Isopentenyladenosine - PGS Plant growth substance - RIA Radioimmunoassay - Z Zeatin - ZR Zeatin riboside  相似文献   

20.
The role and source of gibberellins (GAs) involved in the development of parthenocarpic fruits of Pisum sativum L. has been investigated. Gibberellins applied to the leaf adjacent to an emasculated ovary induced parthenocarpic fruit development on intact plants. The application of gibberellic acid (GA3) had to be done within 1 d of anthesis to be fully effective and the response was concentration-dependent. Gibberellin A1 and GA3 worked equally well and GA20 was less efficient. [3H]Gibberellin A1 applied to the leaf accumulated in the ovary and the accumulation was related to the growth response. These experiments show that GA applied to the leaf in high enough concentration is translocated to the ovary. Emasculated ovaries on decapitated pea plants develop without application of growth hormones. When [3H] GA1 was applied to the leaf adjacent to the ovary a substantial amount of radioactivity accumulated in the growing shoot of intact plants. In decapitated plants, however, this radioactivity was mainly found in the ovary. There it caused growth proportional to the accumulation of CA1. Application of LAB 150978, an inhibitor of GA biosynthesis, to decapitated plants inhibited parthenocarpic fruit development and this inhibition was counteracted by the application of GA3 (either to the fruit, or the leaf adjacent to the ovary, or through the lower cut end of the stem). All evidence taken together supports the view that parthenocarpic pea fruit development on topped plants depends on the import of gibberellins or their precursors, probably from the vegetative aerial parts of the plant.Abbreviations FW flesh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号