首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure-function analysis of yeast tRNA ligase   总被引:1,自引:1,他引:1  
Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.  相似文献   

2.
Mechanism of action of a yeast RNA ligase in tRNA splicing   总被引:44,自引:0,他引:44  
The yeast endonuclease and ligase activities that carry out the splicing of tRNA precursors in vitro have been physically separated. The properties of a partially purified ligase fraction were examined. The ligase requires a divalent cation and a nucleoside triphosphate as cofactor. The product of ligation is a 2′-phosphomonoester, 3′,5′-phosphodiester linkage. The phosphate in the newly formed phosphodiester bond comes from the γ position of ATP, while the 2′ phosphate is derived from the RNA substrate. An adenylylated enzyme intermediate was identified by incorporation of label from α-32P-ATP. Adenylylation was reversed by pyrophosphate, releasing ATP, whereas ligation was accompanied by release of AMP. Polynucleotide kinase and cyclic phosphodiesterase activities copurify with the adenylylated protein and may be required for the tRNA splicing reaction.  相似文献   

3.
During their maturation step, transfer RNAs (tRNAs) undergo excision of their introns by specific splicing. Although tRNA splicing is a molecular event observed in all domains of life, the machinery of the ligation reaction has diverged during evolution. Yeast tRNA ligase 1 (TRL1) is a multifunctional protein that alone catalyzes RNA ligation in tRNA splicing, whereas three molecules [RNA ligase (RNL), Clp1, and PNK/CPDase] are necessary for RNA ligation in tRNA splicing in amphioxi. RNA ligation not only occurs in tRNA splicing, but also in yeast HAC1 mRNA splicing and in animal X-box binding protein 1 (XBP1) mRNA splicing under conditions of endoplasmic reticulum (ER) stress. Yeast TRL1 is known to function as an RNA ligase for HAC1 mRNA splicing, whereas the RNA ligase for XBP1 mRNA splicing is unknown in animals. We examined whether yeast and amphioxus RNA ligases for tRNA splicing function in RNA ligation in mammalian XBP1 splicing. Both RNA ligases functioned in RNA ligation in mammalian XBP1 splicing in vitro. Interestingly, Clp1, and PNK/CPDase were not necessary for exon–exon ligation in XBP1 mRNA by amphioxus RNL. These results suggest that RNA ligase for tRNA splicing might therefore commonly function as an RNA ligase for XBP1 mRNA splicing.  相似文献   

4.
Tpt1 is an essential 230-amino-acid enzyme that catalyzes the final step in yeast tRNA splicing: the transfer of the 2'-PO4 from the splice junction to NAD+ to form ADP-ribose 1'-2'cyclic phosphate and nicotinamide. To understand the structural requirements for Saccharomyces cerevisiae Tpt1 activity, we performed an alanine-scanning mutational analysis of 14 amino acids that are conserved in homologous proteins from fungi, metazoa, protozoa, bacteria, and archaea. We thereby identified four residues-Arg23, His24, Arg71, and Arg138-as essential for Tpt1 function in vivo. Structure-activity relationships at these positions were clarified by introducing conservative substitutions. The activity of the Escherichia coli ortholog KptA in complementing tpt1Delta was abolished by alanine substitutions at the equivalent side chains, Arg21, His22, Arg69, and Arg125. Deletion analysis of Tpt1 shows that the C-terminal 20 amino acids, which are not conserved, are not essential for activity in vivo at 30 degrees C. These findings attest to the structural and functional conservation of Tpt1-like 2'-phosphotransferases and identify likely constituents of the active site.  相似文献   

5.
The final step of tRNA splicing in Saccharomyces cerevisiae requires 2'-phosphotransferase (Tpt1) to transfer the 2'-phosphate from ligated tRNA to NAD, producing mature tRNA and ADP ribose-1' '-2' '-cyclic phosphate. To address how Tpt1 protein recognizes substrate RNAs, we measured the steady-state kinetic parameters of Tpt1 protein with 2'-phosphorylated ligated tRNA and a variety of related substrates. Tpt1 protein has a high apparent affinity for ligated tRNA (K(m,RNA), 0.35 nM) and a low turnover rate (k(cat), 0.3 min(-1)). Tpt1 protein recognizes both tRNA and the internal 2'-phosphate of RNAs. Steady-state kinetic analysis reveals that as RNAs lose structure and length, K(m,RNA) and k(cat) both increase commensurately. For a 2'-phosphorylated octadecamer derived from the anticodon stem-loop of ligated tRNA, K(m,RNA) and k(cat) are 5- and 8-fold higher, respectively, than for ligated tRNA, whereas for a simple substrate like pApA(p)pA, K(m,RNA) and k(cat) are 430- and 150-fold higher, respectively. Tpt1 is not detectably active on a trimer with a terminal 5'- or 3'-phosphate and is very inefficient at removal of a terminal 2'-phosphate unless there is an adjacent 3'-phosphate or phosphodiester. The K(m,NAD) for Tpt1 is substrate dependent: K(m,NAD) is 10 microM with ligated tRNA, 200 microM with pApA(p)pA, and 600 microM with pApApA(p). Preliminary analysis of KptA, a functional Tpt1 protein homologue from Escherichia coli, reveals that KptA protein is strikingly similar to yeast Tpt1 in its kinetic parameters, although E. coli is not known to have a 2'-phosphorylated RNA substrate.  相似文献   

6.
It has been proposed that yeast and Xenopus splicing endonucleases initially recognize features in the mature tRNA domain common to all tRNA species and that the sequence and structure of the intron are only minor determinants of splice-site selection. In accordance with this postulation, we show that yeast endonuclease splices heterologous pre-tRNA(Tyr) species from vertebrates and plants which differ in their mature domains and intron secondary structures. In contrast, wheat germ splicing endonuclease displays a pronounced preference for homologous pre-tRNA species; an extensive study of heterologous substrates revealed that neither yeast pre-tRNA species specific for leucine, serine, phenylalanine and tyrosine nor human and Xenopus pre-tRNA(Tyr) species were spliced. In order to identify the elements essential for pre-tRNA splicing in plants, we constructed chimeric genes coding for tRNA precursors with a plant intron secondary structure and with mature tRNA(Tyr) domains from yeast and Xenopus, respectively. The chimeric pre-tRNA comprising the mature tRNA(Tyr) domain from Xenopus was spliced efficiently in wheat germ extract, whereas the chimeric construct containing the mature tRNA(Tyr) domain from yeast was not spliced at all. These data indicate that intron secondary structure contributes to the specificity of plant splicing endonuclease and that unique features of the mature tRNA domain play a dominant role in enzyme-substrate recognition. We further investigated the influence of specific nucleotides in the mature domain on splicing by generating a number of mutated pre-tRNA species. Our results suggest that nucleotides located in the D stem, i.e. in the center of the pre-tRNA molecule, are recognition points for plant splicing endonuclease.  相似文献   

7.
Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).  相似文献   

8.
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.  相似文献   

9.
10.
Resistance (R) proteins in plants are involved in pathogen recognitionand subsequent activation of innate immune responses. Most resistanceproteins contain a central nucleotide-binding domain. This so-calledNB-ARC domain consists of three subdomains: NB, ARC1, and ARC2.The NB-ARC domain is a functional ATPase domain, and its nucleotide-bindingstate is proposed to regulate activity of the R protein. A highlyconserved methionine–histidine–aspartate (MHD) motifis present at the carboxy-terminus of ARC2. An extensive mutationalanalysis of the MHD motif in the R proteins I-2 and Mi-1 isreported. Several novel autoactivating mutations of the MHDinvariant histidine and conserved aspartate were identified.The combination of MHD mutants with autoactivating hydrolysismutants in the NB subdomain showed that the autoactivation phenotypesare not additive. This finding indicates an important regulatoryrole for the MHD motif in the control of R protein activity.To explain these observations, a three-dimensional model ofthe NB-ARC domain of I-2 was built, based on the APAF-1 templatestructure. The model was used to identify residues importantfor I-2 function. Substitution of the selected residues resultedin the expected distinct phenotypes. Based on the model, itis proposed that the MHD motif fulfils the same function asthe sensor II motif found in AAA+ proteins (ATPases associatedwith diverse cellular activities)—co-ordination of thenucleotide and control of subdomain interactions. The presented3D model provides a framework for the formulation of hypotheseson how mutations in the NB-ARC exert their effects. Key words: Intramolecular interactions, MHD motif, NB-ARC domain, plant disease resistance, protein structure, R proteins, signal transduction, site-directed mutagenesis  相似文献   

11.
The ability of a vacuolar H(+)-ATPase (V-ATPase) subunit homolog (subunit A) from plants to rescue the vma mutant phenotype of yeast was investigated as a first step towards investigating the structure and function of plant subunits in molecular detail. Heterologous expression of cotton cDNAs encoding near-identical isoforms of subunit A in mutant vma1 delta yeast cells successfully rescued the mutant vma phenotype, indicating that subunit A of plants and yeast have retained elements essential to V-ATPases during the course of evolution. Although vacuoles become acidified, the plant-yeast hybrid holoenzyme only partially restored V-ATPase activity (approximately 60%) in mutant yeast cells. Domain substitution of divergent N- or C-termini only slightly enhanced V-ATPase activity, whereas swapping both domains acted synergistically, increasing coupled ATP hydrolysis and proton translocation by approximately 22% relative to the native plant subunit. Immunoblot analysis indicated that similar amounts of yeast, plant or plant-yeast chimeric subunits are membrane-bound. These results suggest that subunit A terminal domains contain structural information that impact V-ATPase structure and function.  相似文献   

12.
N Luhtala  R Parker 《PloS one》2012,7(7):e41111
T2 ribonucleases are conserved nucleases that affect a variety of processes in eukaryotic cells including the regulation of self-incompatibility by S-RNases in plants, modulation of host immune cell responses by viral and schistosome T2 enzymes, and neurological development and tumor progression in humans. These roles for RNaseT2's can be due to catalytic or catalytic-independent functions of the molecule. Despite this broad importance, the features of RNaseT2 proteins that modulate catalytic and catalytic-independent functions are poorly understood. Herein, we analyze the features of Rny1 in Saccharomyces cerevisiae to determine the requirements for cleaving tRNA in vivo and for inhibiting cellular growth in a catalytic-independent manner. We demonstrate that catalytic-independent inhibition of growth is a combinatorial property of the protein and is affected by a fungal-specific C-terminal extension, the conserved catalytic core, and the presence of a signal peptide. Catalytic functions of Rny1 are independent of the C-terminal extension, are affected by many mutations in the catalytic core, and also require a signal peptide. Biochemical flotation assays reveal that in rny1Δ cells, some tRNA molecules associate with membranes suggesting that cleavage of tRNAs by Rny1 can involve either tRNA association with, or uptake into, membrane compartments.  相似文献   

13.
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that thwarts a tRNA-damaging host response to virus infection. The 374-aa Rnl1 protein consists of an N-terminal nucleotidyltransferase domain fused to a unique C-terminal domain composed of 10 alpha helices. We exploited an in vitro tRNA splicing system to demonstrate that Rnl1 has an inherent specificity for sealing tRNA with a break in the anticodon loop. The tRNA specificity is imparted by the C domain, any deletion of which caused the broken tRNA to be sealed as poorly as the linear intron in vitro and also abolished Rnl1 tRNA splicing activity in vivo. Deletion analysis demarcated Rnl1-(1-254) as a minimal catalytic domain of Rnl1, capable of all chemical steps of the nonspecific RNA ligation reaction. Alanine scanning of the N domain identified Ser103, Leu104, Lys117, and Ser118 as important for pRNA ligation in vitro and tRNA repair in vivo.  相似文献   

14.
Saccharomyces cerevisiae Dbr1 is a 405-amino acid RNA debranching enzyme that cleaves the 2′-5′ phosphodiester bonds of the lariat introns formed during pre-mRNA splicing. Debranching appears to be a rate-limiting step for the turnover of intronic RNA, insofar as the steady-state levels of lariat introns are greatly increased in a Δdbr1 strain. To gain insight to the requirements for yeast Dbr1 function, we performed a mutational analysis of 28 amino acids that are conserved in Dbr1 homologs from other organisms. We identified 13 residues (His13, Asp40, Arg45, Asp49, Tyr68, Tyr69, Asn85, His86, Glu87, His179, Asp180, His231 and His233) at which alanine substitutions resulted in lariat intron accumulation in vivo. Conservative replacements at these positions were introduced to illuminate structure–activity relationships. Residues important for Dbr1 function include putative counterparts of the amino acids that comprise the active site of the metallophosphoesterase superfamily, exemplified by the DNA phosphodiesterase Mre11. Using natural lariat RNAs and synthetic branched RNAs as substrates, we found that mutation of Asp40, Asn85, His86, His179, His231 or His233 to alanine abolishes or greatly diminishes debranching activity in vitro. Dbr1 sediments as a monomer and requires manganese as the metal cofactor for debranching.  相似文献   

15.
Viral inclusion bodies, or viroplasms, that form in rotavirus-infected cells direct replication and packaging of the segmented double-stranded RNA (dsRNA) genome. NSP2, one of two rotavirus proteins needed for viroplasm assembly, possesses NTPase, RNA-binding, and helix-unwinding activities. NSP2 of the rotavirus group causing endemic infantile diarrhea (group A) was shown to self-assemble into large doughnut-shaped octamers with circumferential grooves and deep clefts containing nucleotide-binding histidine triad (HIT)-like motifs. Here, we demonstrate that NSP2 of group C rotavirus, a group that fails to reassort with group A viruses, retains the unique architecture of the group A octamer but differs in surface charge distribution. By using an NSP2-dependent complementation system, we show that the HIT-dependent NTPase activity of NSP2 is necessary for dsRNA synthesis, but not for viroplasm formation. The complementation system also showed that despite the retention of the octamer structure and the HIT-like fold, group C NSP2 failed to rescue replication and viroplasm formation in NSP2-deficient cells infected with group A rotavirus. The distinct differences in the surface charges on the Bristol and SA11 NSP2 octamers suggest that charge complementarity of the viroplasm-forming proteins guides the specificity of viroplasm formation and, possibly, reassortment restriction between rotavirus groups.  相似文献   

16.
The TΨC stem and loop (TSL) of tRNA contains highly conserved nucleoside modifications, m5C49, T54, Ψ55 and m1A58. U54 is methylated to m5U (T) by m5U54 methyltransferase (RUMT); A58 is methylated to m1A by m1A58 tRNA methyltransferase (RAMT). RUMT recognizes and methylates a minimal TSL heptadecamer and RAMT has previously been reported to recognize and methylate the 3′-half of the tRNA molecule. We report that RAMT can recognize and methylate a TSL heptadecamer. To better understand the sensitivity of RAMT and RUMT to TSL conformation, we have designed and synthesized variously modified TSL constructs with altered local conformations and stabilities. TSLs were synthesized with natural modifications (T54 and Ψ55), naturally occurring modifications at unnatural positions (m5C60), altered sugar puckers (dU54 and/or dU55) or with disrupted U-turn interactions (m1Ψ55 or m1m3Ψ55). The unmodified heptadecamer TSL was a substrate of both RAMT and RUMT. The presence of T54 increased thermal stability of the TSL and dramatically reduced RAMT activity toward the substrate. Local conformation around U54 was found to be an important determinant for the activities of both RAMT and RUMT.  相似文献   

17.
Delta-like homolog 1 (DLK1), a paternally imprinted gene with several alternative splicing isoforms, is an important regulator of fetal and postnatal development. We report the sequence of porcine DLK1 (pDLK1) and examine the expression and alternative splicing isoforms in the pig (Sus scrofa) and human. DLK1-A was the sole isoform identified in human tissues and has been shown to be present in mouse and cattle. Surprisingly, DLK1-A was undetected in various tissues from fetal and postnatal pigs. Instead, DLK1-C2 was the most abundant isoform while DLK1-B was expressed to a lesser extent. In fractionated adipose tissue, pDLK1 was most highly expressed in the stromal-vascular cell fraction. In addition, total pDLK1 was highly expressed in fetal adipose tissue but dramatically decreased postnatally. Our data suggests that expression of DLK1-B and -C2 isoforms is sufficient for normal pig development. Furthermore, human and pig samples showed no alterations in species-specific splicing, but expression levels decreased with age, suggesting that regulation of expression, not splicing, is the most likely mechanism controlling the biological function of DLK1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号