首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An endogenous mannose binding lectin isolated from the rat cerebellum, CSL, was localized using immunocytochemical techniques in adult and in developing rat sciatic nerve. The lectin is present in Schwann cell cytoplasm and in compact myelin. It is present very early in Schwann cells and persists throughout postnatal sciatic nerve development. Endogenous ligands for the lectin were detected using iodinated-CSL binding to proteins blotted after polyacrylamide gel electrophoresis. Probably PO and MAG glycoproteins are specifically bound by CSL in contrast with numerous other Concanavalin A binding glycoproteins. A 31 kDa glycoprotein identified in purified preparations of axons of young rats also reacts with CSL. Based on the present developmental biochemical and immunochemical studies, an hypothetical scheme is proposed for the molecular basis of axon-Schwann cell interactions and of stabilization of compact myelin.  相似文献   

2.
《The Journal of cell biology》1986,103(6):2673-2682
During the active phase of myelination in myelin-deficient mutant mice (mld), myelin basic protein (MBP) synthesis is defective and the myelin lamellae are uncompacted. In these mutants, we found a fast metabolism of the myelin-associated glycoprotein (MAG) and of sulfatides, and the presence of cholesterol esters and a degradation product of MAG, dMAG, indicating that mld myelin was unstable. The increased synthesis of MAG and Wolfgram protein, two proteins present in uncompacted myelin sheath and paranodal loops, was demonstrated by high levels of messengers. Simultaneously, we found an accumulation of inclusion bodies, vacuoles, and rough endoplasmic reticulum in mld oligodendrocytes. This material was heavily immunostained for MAG. Furthermore, the developmental change between the two molecular forms of MAG (p72MAG/p67MAG) was delayed in mld mice. In 85-d-old mld mice, the MBP content increased and myelin lamellae became better compacted. In these mutants, dMAG was absent and MAG mRNAs were found in normal amounts. Furthermore, the fine structure of mld oligodendrocytes was normal and the MAG immunostaining was similar to age-matched controls. These results support a functional role for MBP in maintaining the metabolic stability and the compact structure of myelin. Furthermore, in the absence of MBP and myelin compaction, the regulation of the synthesis of at least two membrane proteins related to myelin cannot proceed.  相似文献   

3.
In the sciatic nerve, two major classes of Schwann cells are present which differ in their capability to produce myelin. Myelinating Schwann cells surround most of the axons with the formation of a typical myelin sheath. Nonmyelinating Schwann cells serve to insulate individual axons without formation of myelin. These dissimilarities between the two types of Schwann cells provided an interesting model for studying mechanisms underlying myelination and the formation of contacts between axons and myelinating cells. It is demonstrated here that the endogenous lectin cerebellar soluble lectin (CSL), implicated in myelin stabilization and in formation of contact between axon and myelinating cells in the CNS and in the sciatic nerve, is undetectable in non-myelinating Schwann cells. In contrast, most axons surrounded by these cells contained the major axonal glycoprotein ligand of CSL, a 31-kDa glycoprotein which is present in large amounts. The possible relationship between the presence of CSL in Schwann cells and their capacity to interact with axons and to produce myelin are discussed.  相似文献   

4.
5.
6.
P Schulz  T F Cruz  M A Moscarello 《Biochemistry》1988,27(20):7793-7799
Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [32P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein.  相似文献   

7.
A hereditary dysmyelinating mutation, named myelin deficient (shi(mld)), is characterized by reduced expression of myelin basic protein (MBP). In shi(mld), the MBP gene is duplicated and its reduced expression is mainly determined by the level of mRNA. We have characterized the structure and function of the promoter regions of the duplicated MBP genes in shi(mld). Among the lambda clones containing promoter regions of the duplicated MBP genes in shi(mld), one (gene 1) had the same restriction enzyme pattern as that in control mice, but another (gene 2) had a rearrangement on a distal part of the promoter. A 712-bp nucleotide sequence upstream of the first exons of both of the duplicated MBP genes of shi(mld) was completely consistent with that of the control. Promoter activities of 1.3-kb 5'-flanking regions from respective genes of shi(mld) measured by in vitro run-off assay using HeLa whole-cell extracts were indistinguishable from that of the control MPB gene. Chromosomal mapping by in situ hybridization suggested that the duplicated MBP genes were located closely to each other at the distal part of chromosome 18. A recombinational event including the inversion seemed to have occurred within gene 1 and its possible relationship to the reduced expression of MBP is discussed.  相似文献   

8.
9.
Lectin Receptors in Central Nervous System Myelin   总被引:14,自引:12,他引:2  
Abstract: Proteins from central nervous system myelin were separated by high-resolution, sodium dodecyl sulfate-pore gradient slab gel electrophoresis and the glycoproteins were detected by autoradiography after direct application of radioiodinated lectins. A surprising heterogeneity of lectin binding proteins was found associated with this highly purified membrane fraction. Iodinated wheat germ agglutinin, which has a monosaccharide specificity for N-acetyl-D-glucosamine and N-acetylneuraminic acid, revealed six major bands and two minor bands. By correlating the molecular weights (Mr) of radioiodinated protein standards with the gel concentration at the position reached by the protein (%T) using the relationship log(Mr) versus log(%T) for gradient gel systems, molecular weight estimates of 128, 300, 109, 800, 75, 300, 48, 800, 26, 100 and 23, 700 were obtained for the major glycoprotein bands and molecular weights of 98, 300 and 86, 600 for the minor bands. When the isolated myelin was extracted with chloroform-methanol-a procedure that removes the major myelin proteins, including the proteolipid protein and most of the basic proteins and hence concentrates the minor high molecular weight proteins-and analyzed after gradient gel electrophoresis, additional glycoproteins of molecular weights 607, 700, 196, 900, 175, 100, 61, 800, 52, 200 and 42, 600 were resolved with this lectin. Radioiodinated soybean agglutinin, which has a specificity for N-acetyl-D-galactosamine and D-galactose, revealed seven bands, three of which were unique to this lectin (19, 600, 19, 100 and 17,000). Iodinated concanavalin A (d -mannose, d -glucose) revealed bands similar to the wheat germ agglutinin as well as additional bands of 40, 300, 37, 300, 35, 700, 21, 800 and 20, 400. The glycoprotein specificity for these lectin binding components was demonstrated by hapten carbohydrate binding inhibition and by organic solvent extraction for removal of glycolipids. Based on these experiments using three lectins with different carbohydrate specificity, 22 lectin-reactive components were identified; however, six of these bands were removed by chloroform-methanol extraction. The variations observed in the lectin binding capacity for these different bands suggest possible carbohydrate heterogeneity for these individual glycoproteins. Although many of these bands may be dissociated subunits (monomeric polypeptides) of oligomeric complexes, the observed multiplicity of these quantitatively minor glycoproteins associated with the purified myelin membrane implies a more intricate molecular organization for the myelin sheath complex than previously believed.  相似文献   

10.
The mld mutation on chromosome 18 in the mouse is a putative allele of the shiverer (shi) mutation. We have analyzed the structure of myelin basic protein (MBP) gene sequences in mld DNA by restriction mapping of genomic DNA. The results indicate that the mld chromosome carries two copies of the MBP structural gene, one of which is intact and one of which is interrupted. Genetic analysis indicates that the interrupted gene is close to the intact MBP structural gene and cosegregates with the mld mutation. We have also analyzed the levels of MBP polypeptides and MBP-specific mRNA in wild-type, homozygous and heterozygous shiverer and mld mice and in mice carrying both mutations. The results indicate that both shi and mld are cis-acting codominant mutations that cause severely reduced steady state levels of MBP-specific mRNA and MBP polypeptides in the brain. We have analyzed the total number of oligodendrocytes and the number of MBP-positive oligodendrocytes in mld and shi brain primary cultures. In shi cultures, none of the oligodendrocytes expresses MBP. However, in mld cultures, approximately 5% of the oligodendrocytes express MBP. The nature of the "revertant" mld oligodendrocytes is not known.  相似文献   

11.
12.
Immunochemical localization of an endogenous mannose-binding protein, the cerebellar soluble lectin (CSL; Zanetta et al., J. Neurochem. 49, 1250-1257 (1987)), in Chinese hamster ovary cells indicated its high concentration in areas of contact between cells. This suggested its role in cell adhesion. The pattern of staining differed significantly in the cells cultured in suspension from that grown as monolayer. In cells maintained for a short time as suspension, the extracellular CSL immunoreactivity was found mainly in close apposition to the plasma membrane including contact areas. In cells cultured as monolayer, extracellularly, the lectin was found both at the cell surface and in a 75-nm thick layer between two cells, apparently adhering to the cell surface through bridges. Endogenous glycoprotein ligands of CSL were present in the cultures of CHO cells, both as membrane-bound glycoproteins and as glycoprotein ligands soluble in the presence of mannose in the absence of detergent. The lectin CSL induced adhesion between these cells as evident by low concentration of anti-CSL Fab fragments inhibiting such adhesion. These data suggested that adhesion between CHO cells occurs, in part, through a glycobiological recognition system involving CSL. This mechanism should be taken into account for the interpretation of experiments of transfection in CHO cells of the genes of glycoproteins involved in cell adhesion.  相似文献   

13.
The proliferation of Schwann cells (the myelinating cells ofthe peripheral nervous system) is stimulated by the contactwith axonal membranes. It is suggested that the endogenous carbohydrate-bindingprotein (lectin) cerebellar soluble lectin (CSL) bound to ligandsat the surface of axonal preparations is mitogenic for Schwanncells. Both autocrine and axon-stimulated Schwann cell proliferationsseem to be dependent on the presence of CSL and its ligandsat the Schwann cell surface, as suggested by the effects ofN-glycosylation inhibitors and anti-CSL Fab fragments. Thesedata suggest that CSL regulates Schwann cell proliferation byclustering of a few glycoprotein ligands at the cell surface,consequently modulating phosphorylations. adhesion CSL N-glycan MAG signal  相似文献   

14.
Mice homozygous for the mutation myelin deficient (mld), an allele of shiverer, exhibit decreased CNS myelination, tremors, and convulsions of progressively increasing severity leading to an early death. In this report we demonstrate in mld mice that the gene encoding myelin basic protein (MBP) is expressed at decreased levels and on an abnormal temporal schedule relative to the wild-type gene. Southern blot analyses, field-inversion gel electrophoresis studies, and analyses of mld MBP cosmid clones indicate that there are multiple linked copies of the MBP gene in mld mice. We have introduced an MBP transgene into mld mice and found that myelination increases and tremors and convulsions decrease. Mld and shiverer mice with zero, one, or two copies of the MBP transgene express distinct levels of MBP mRNA and myelin. The availability of a range of mice expressing graded levels of myelin should facilitate quantitative analysis of the roles of MBP in the myelination process and of myelin in nerve function.  相似文献   

15.
1. Myelin is an important structure for facilitating the conduction of impulses along the axons both in the central nervous system (CNS) and peripheral nervous system (PNS). 2. Myelin basic protein (MBP) is a major protein in CNS myelin. 3. MBP is expressed specifically in the nervous system. 4. The MBP gene has been cloned and characterized. 5. Two mutant mice, Shiverer (shi) and myelin-deficient (mld. shimid), are autosomal recessive mutants that show severe symptoms such as intentional tremor. They have been found to have a mutation in the MBP gene that results in poor myelination in the central nervous system. 6. It was found that rearrangement within the MBP gene results in low expression of the gene. 7. In Shiverer, the MBP gene is partially deleted (from exons 3 to 7), and in mld, the gene is duplicated tandemly and a large portion of the duplication is inverted upstream of the intact copy. 8. In mld, anti-sense RNA complementary to exons 3-7, which correspond to the inverted segment, was detected by RNase protection studies, and presumed to be responsible for the reduced expressions of MBP. 9. The mechanism of gene rearrangement in MBP was also characterized. 10. This article reviews the recent progress in the study of the MBP gene, especially the rearrangement of the gene and its expression in mutant mice.  相似文献   

16.
Abstract: Myelin-deficient ( mld ) is a complex mutation affecting the myelin basic protein (MBP) locus of the mouse. It consists of duplication and partial inversion of the MBP gene and results in a dysfunctional MBP locus. The mutant phenotype is reversed, both in vivo and in vitro, in ∼5% of mld oligodendrocytes. One possible mechanism for the somatic reversion is recombination between homologous sequences of the duplicated gene copies to reconstitute a functional MBP locus. There are several possible recombination events that could reconstitute a functional MBP locus by DNA rearrangement. Two of these would result in reinversion and circularization of specific MBP gene sequences, respectively. In this work polymerase chain reaction analysis was used to detect both reinverted and circularized MBP gene sequences in mld mouse tissues, indicating that DNA rearrangement at the MBP locus does occur. Analysis of individually harvested cells showed that in revertant MBP-positive mld oligodendrocytes DNA rearrangement at the MBP locus was correlated with reactivation of the MBP gene. Fluctuation analysis showed that reactivation of the MBP locus is a stochastic event occurring with a frequency of ∼1.4 × 10−6 per cell per cell cycle during oligodendrocyte development. The frequency of rearrangement and reactivation of the MBP locus was comparable in double mutant ( mld/mld , scid/scid ) and single mutant ( mld/mld , + scid /+ scid ) mice, indicating that the scid factor is not required for MBP gene reactivation in mld . The significance of DNA rearrangement in mammalian development is discussed.  相似文献   

17.
Tsang  D.  Tsang  Y. S.  Ho  W. K. K.  Wong  R. N. S. 《Neurochemical research》1997,22(7):811-819
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

18.
19.
Myelin-Associated Glycoprotein and Other Proteins in Trembler Mice   总被引:5,自引:4,他引:1  
The myelin-associated glycoprotein (MAG) and other myelin proteins were quantitated in homogenates of whole sciatic nerve from adult and 20-day-old Trember mice. In the nerves of adult mice, the concentration of MAG was increased from 1.1 ng/micrograms of total protein in the controls to 1.4 ng/micrograms protein in the Tremblers. By contrast, the concentrations of P0 glycoprotein and myelin basic proteins were reduced to 27% and 20% of control levels, respectively. Immunoblots demonstrated that P2 was also greatly reduced in the Trembler nerves. The specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was 65% of the control level. Immunoblot analysis showed that MAG had a higher than normal apparent Mr in the sciatic nerves of the Trembler mice, but its apparent Mr was normal in the brains of these mutants. In 20-day-old Tremblers, the P0 and myelin basic protein were reduced slightly less to about 40% of the level in the nerves of age-matched controls. CNP and MAG levels were not significantly different from those in controls, and MAG exhibited a shift toward higher apparent Mr similar to that in the adults. The maintenance of high MAG levels despite the severe deficit of myelin, as reflected by the decrease of the major myelin proteins, is consistent with the immunocytochemical localization of MAG in periaxonal Schwann cell membranes, Schmidt-Lantermann incisures, lateral loops, and the outer mesaxon and its absence from compact myelin. The abnormal form of MAG in the peripheral nervous system (PNS) of the Trembler mice may contribute to the pathology in this mutant.  相似文献   

20.
Summary The discovery of endogenous lectins having specific and high affinity for the carbohydrate portions of glycoproteins has opened up new directions in the field of cell adhesion and cell recognition. Two endogenous lectins, termed as CSL and R1, initially isolated from the rat cerebellum and having a wide distribution in mammalian tissues, have been shown to participate in essential mechanisms of cell adhesion. The membrane-bound lectin R1 seems to be involved in transient recognition between neuronal cells, followed by elimination of the glycoprotein ligands at the surface of the recognized cell. In contrast, CSL is a molecule involved in adhesion between various normal or transformed cells since it participates in the formation of tight junctions. The glycoprotein ligands recognized with higher affinity by these two lectins seem to possess a special structure which defines a sub-class of oncofetal HNK-1 glycans. The over-expression of the glycoprotein ligands of these lectins in most transformed cells provides new tools for understanding the underlying mechanism of malignant transformation as well as the generation of signals through cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号