首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study used biochemical and immunohistochemical methods to characterize the chondroitin sulphate-rich proteoglycans from human alveolar bone obtained from an oral source. Proteoglycans were extracted from bone by a sequential 4 m guanidine HCl extraction process, and purified by DEAE-ion exchange chromatography. SDS-PAGE and Western blot analysis, using CS-56 monoclonal antibody, demonstrated one major proteoglycan species with a core protein of 58 kDa, glycosaminoglycan chains of 45--66 kDa and a mean molecular weight of 205 kDa. This work confirmed the biochemistry of chondroitin sulphate-rich proteoglycans from a novel source of adult human alveolar bone, and pointed towards a proteoglycan with a high glutamate, glycine, aspartate, alanine, serine and leucine content. Sections of alveolar bone were embedded in LR White resin, labelled with CS-56 antibody and examined with the light and electron microscopes. At the light microscope level, labelling was restricted to the osteocyte lacunae and canaliculi. Ultrastructural observations showed that the labelling was localized to fine filamentous material in the walls of the osteocytes and canaliculi. Sparse labelling was associated with the collagen fibres immediately subjacent to the lamina limitans, but no labelling of the mineralized matrix was observed. These findings also indicated subtle differences in the distribution of chondroitin sulphate compared with previously reported work, which may indicate species or age differences in the samples used in this study. Ultrastructural analysis confirmed and extended observations of glycosaminoglycan localization at the osteocyte cell membrane of mature human alveolar bone  相似文献   

2.
Summary Staining of articular cartilage by the periodic acid-Schiff (PAS) method was measured using microspectrophotometry. Standard PAS technique with 2 h oxidation produced a distinct Schiff reaction in the cartilage sections. The staining increased with depth of the articular cartilage demonstrating distribution of the glycoproteins. The modified PAS method included a second, longer periodic acid treatment, which made the uronic acid of glycosaminoglycans PAS-positive. The modified PAS method proved to be highly specific for chondroitin sulphate, which was determined from the samples with gas chromatography. A statistically significant correlation between the Schiff reactivity and galactosamine content of the sections was observed. It is concluded that for articular cartilage standard and modified PAS methods are useful procedures for demonstrating local changes of glycoproteins and chondroitin sulphate, respectively.  相似文献   

3.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

4.
The effect of prolonged sparing and prolonged loading of the knee-joint of dogs on the glucosamine, sialic acid, sulphate and hydroxyproline contents of the articular cartilage was investigated. (a) In the articular cartilage of the spared leg the amount of sulphate decreased by 24.7%, while the sialic acid content remained unchanged. Hydroxyproline showed a slight decrease. (b) On increased loading, glucosamine augmented by 53% and sialic acid by 32.5%. No appreciable changes occurred in sulphate and hydroxyproline. It is concluded that an increased loading brings about accumulation of glycoproteins while the amount of sulphated glycosaminoglycans does not change appreciably; the glycoprotein content of the spared articular cartilage remains unchanged, whereas the chondroitin sulphate content decreases considerably.  相似文献   

5.
Summary In a human non-Hodgkin (B) lymphoma xenograft (HT-117) heparan sulphate (HS) proved to be the main cell surface glycosaminoglycan, in contrast to the chondroitin sulphate dominance in normal lymphoid cells. Using anti-proteoglycan (PG) antibodies and immunoelectronmicroscopy, two heparan sulphate proteoglycans (transferrin receptor (TfR) and fibroblast membrane type) and one chondroitin sulphate proteoglycan (articular cartilage type) molecule were co-localized as random clusters on the surface of these lymphoma cells. Double labelling revealed that during internalization, which occurred via endosomes avoiding the lysosomal system, the different proteoglycan (PG) antigens became separated. The TfR and fibroblast membrane type HSPG epitopes reappeared on plasmalemmal vesicles derived most probably from the multivesicular endosomes, representing a unique form of exocytosis. It is suggested that different cell membrane PGs are integrated into subunits of yet unknown function in these human non-Hodgkin (B) lymphoma cells.  相似文献   

6.
Perlecan is a modular heparan sulphate and/or chondroitin sulphate substituted proteoglycan of basement membrane, vascular tissues and cartilage. Perlecan acts as a low affinity co-receptor for fibroblast growth factors 1, 2, 7, 9, binds connective tissue growth factor and co-ordinates chondrogenesis, endochondral ossification and vascular remodelling during skeletal development; however, relatively little is known of its distribution in these tissues during ageing and development. The aim of the present study was to immunolocalise perlecan in the articular and epiphyseal growth plate cartilages of stifle joints in 2-day to 8-year-old pedigree merino sheep. Perlecan was prominent pericellularly in the stifle joint cartilages at all age points and also present in the inter-territorial matrix of the newborn to 19-month-old cartilage specimens. Aggrecan was part pericellular, but predominantly an extracellular proteoglycan. Perlecan was a prominent component of the long bone growth plates and displayed a pericellular as well as a strong ECM distribution pattern; this may indicate a so far unrecognised role for perlecan in the mineralisation of hypertrophic cartilage. A significant age dependant decline in cell number and perlecan levels was evident in the hyaline and growth plate cartilages. The prominent pericellular distribution of perlecan observed indicates potential roles in cell-matrix communication in cartilage, consistent with growth factor signalling, cellular proliferation and tissue development.  相似文献   

7.
Novel sulphation motifs within the glycosaminoglycan chain structure of chondroitin sulphate (CS) containing proteoglycans (PGs) are associated with sites of growth, differentiation and repair in many biological systems and there is compelling evidence that they function as molecular recognition sites that are involved in the binding, sequestration or presentation of soluble signalling molecules (e.g. morphogens, growth factors and cytokines). Here, using monoclonal antibodies 3B3(-), 4C3 and 7D4, we examine the distribution of native CS sulphation motifs within the developing connective tissues of the human foetal knee joint, both during and after joint cavitation. We show that the CS motifs have broad, overlapping distributions within the differentiating connective tissues before the joint has fully cavitated; however, after cavitation, they all localise very specifically to the presumptive articular cartilage tissue. Comparisons with the labelling patterns of heparan sulphate (HS), HS-PGs (perlecan, syndecan-4 and glypican-6) and FGF-2, molecules with known signalling roles in development, indicate that these also become localised to the future articular cartilage tissue after joint cavitation. Furthermore, they display interesting, overlapping distributions with the CS motifs, reflective of early tissue zonation. The overlapping expression patterns of these molecules at this site suggests they are involved, or co-participate, in early morphogenetic events underlying articular cartilage formation; thus having potential clinical relevance to mechanisms involved in its repair/regeneration. We propose that these CS sulphation motifs are involved in modulating the signalling gradients responsible for the cellular behaviours (proliferation, differentiation, matrix turnover) that shape the zonal tissue architecture present in mature articular cartilage.  相似文献   

8.
9.
The protein/uronic acid ratio in monomers and aggregates of proteoglycans in the human articular cartilage is investigated. It is shown that for the first two hours of cartilage extraction by isotonic solution proteoglycans with the low concentration of chondroitin sulphate are mainly removed; in the process of the subsequent extraction proteoglycans with a large amount of chondroitin sulphate; the quantity of chondroitin sulphate in the molecule does not effect the ability of proteoglycans to aggregation. The protein/uronic acid ratio increases in cartilage proteoglycans with aging and in the process of cartilage degeneration due to a decrease in the amount of the carbohydrate part of the molecule.  相似文献   

10.
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

11.
H Hagiwara 《Histochemistry》1992,98(5):305-309
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

12.
In a human non-Hodgkin (B) lymphoma xenograft (HT-117) heparan sulphate (HS) proved to be the main cell surface glycosaminoglycan, in contrast to the chondroitin sulphate dominance in normal lymphoid cells. Using anti-proteoglycan (PG) antibodies and immunoelectronmicroscopy, two heparan sulphate proteoglycans (transferrin receptor (TfR) and fibroblast membrane type) and one chondroitin sulphate proteoglycan (articular cartilage type) molecule were co-localized as random clusters on the surface of these lymphoma cells. Double labelling revealed that during internalization, which occurred via endosomes avoiding the lysosomal system, the different proteoglycan (PG) antigens became separated. The TfR and fibroblast membrane type HSPG epitopes reappeared on plasmalemmal vesicles derived most probably from the multivesicular endosomes, representing a unique form of exocytosis. It is suggested that different cell membrane PGs are integrated into subunits of yet unknown function in these human non-Hodgkin (B) lymphoma cells.  相似文献   

13.
The effects of proteoglycans/glycosaminoglycans on the thermal stability of in vivo assembled collagen fibrils have been examined. The shrinkage temperature of tendon collagen was found to be linearly dependent on the concentration of chondroitin sulphate in the surrounding fluid. Enzymic pretreatment of articular cartilage, to reduce its glycosaminoglycan content, resulted in decreased stability of the collagen present. The stability of the collagen in hyaluronidase-treated cartilage was found to be higher when measured in a solution of chondroitin sulphate (30 g/dl) than in buffer alone. The results of this study demonstrate that the proteoglycans stabilize collagen fibrils in tissues such as articular cartilage.  相似文献   

14.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

15.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

16.
The intensity of safranin 'O' staining is directly proportional to the proteoglycan content in normal cartilage. Safranin 'O' has thus been used to demonstrate any changes that occur in articular disease. In this study, staining patterns obtained using monoclonal antibodies against the major components of cartilage proteoglycan chondroitin sulphate (anti CS) and keratan sulphate (anti KS), have been compared with those obtained with safranin 'O' staining, in both normal and arthritic tissues. In cartilage where safranin 'O' staining was not detectable, the monoclonal antibodies revealed the presence of both keratan and chondroitin sulphate. Thus, safranin 'O' is not a sensitive indicator of proteoglycan content in diseases where glycosaminoglaycan loss from cartilage has been severe.  相似文献   

17.
Investigations were performed on the effect of prednisolone (0.5 mg/kg) on the regenerating femoral articular cartilage of the knee joint in dogs that had been subjected to semiarthroplasty. After 70 days of prednisolone treatment the dogs were killed and the regenerating articular cartilage was removed, minced, and dried with acetone. The acetone-dried material was used for the determination of galactosamine, glucosamine, uronic acid, sulphate, sialic acid and hydroxyproline. Prednisolone treatment elicited a quantitative increase in galactosamine (30.2%), uronic acid (76.2%), and sulphate (9.1%), while no difference was observed in sialic acid content between the treated and untreated groups. From the molar ratio of the measured components it appears that prednisolone produced an increase in chondroitin sulphate and hyaluronic acid, and a decrease in the keratosulphate content of cartilage. By comparing the values measured in the regenerating articular cartilage of control and prednisolone-treated dogs with the values obtained in the mature articular cartilage, we may conclude that prednisolone--at least as regards the glycosaminoglycans of the ground substance--exerts an accelerating effect on cartilage regeneration.  相似文献   

18.
Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-μm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth.  相似文献   

19.
Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.  相似文献   

20.
Mutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate proteoglycan undersulfation affects also signalling pathways involved in cell proliferation and differentiation. Therefore we studied macromolecular sulfation in the different zones of the dtd mouse growth plate and these data were related to growth plate histomorphometry and proliferation analysis.A 2-fold increase of non-sulfated disaccharide in dtd animals compared to wild-type littermates in the resting, proliferative and hypertrophic zones was detected indicating proteoglycan undersulfation; among the three zones the highest level of undersulfation was in the resting zone. The relative height of the hypertrophic zone and the average number of cells per column in the proliferative and hypertrophic zones were significantly reduced compared to wild-types; however the total height of the growth plate was within normal values. The chondrocyte proliferation rate, measured by bromodeoxyuridine labelling, was also significantly reduced in mutant mice. Immunohistochemistry combined with expression data of the dtd growth plate demonstrated that the sulfation defect alters the distribution pattern, but not expression, of Indian hedgehog, a long range morphogen required for chondrocyte proliferation and differentiation.These data suggest that in dtd mice proteoglycan undersulfation causes reduced chondrocyte proliferation in the proliferative zone via the Indian hedgehog pathway, therefore contributing to reduced long bone growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号