首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycoproteins of the membranes of bovine chromaffin granules were characterized by two polyacrylamide gel electrophoresis systems. Five components (I-V) were demonstrated with apparent molecular weights ranging in the unreduced form from 45,000 to 150,000. Glycoprotein I was identified as the enzyme dopamine β-hydroxylase. Four of these glycoproteins (with the exception of component IV) were apparently also present in the membranes of pig and horse chromaffin granules. The soluble proteins of chromaffin granules contained at least three glycoproteins. Only glycoprotein I (dopamine β-hydroxylase) was present both in the soluble content and in the membranes of chromaffin granules. Affinity chromatography with lectins demonstrated that from the soluble proteins only dopamine β-hydroxylase was adsorbed by concanavalin A, whereas none of these proteins reacted with wheat germ lectin and Ricinus communis agglutinin. Three membrane proteins including dopamine β-hydroxylase and glycoprotein II as major components were adsorbed by concanavalin A, whereas wheat germ lectin bound only component II and a small amount of component III. By electron microscopy it was demonstrated that concanavalin A did not bind to intact chromaffin granules whereas ruthenium red and cationized ferritin did. Isotope labelling after galactose oxidase treatment revealed that at least the carbohydrate portion of the major glycoproteins is present on the inner side of the granule membranes facing the content.  相似文献   

2.
1. Confluent human skin fibroblasts maintained in a chemically defined medium incorporate l-[1-3H]fucose in a linear manner with time into non-diffusible macromolecules for up to 48h. Chromatographic analysis demonstrated that virtually all the macromolecule-associated 3H was present as [3H]fucose. 2. Equilibrium CsCl-density-gradient centrifugation established that [3H]fucose-labelled macromolecules released into the medium were predominantly glycoproteins. Confirmation of this finding was provided by molecular-size analyses of the [3H]fucose-labelled material before and after trypsin digestion. 3. The [3H]fucose-labelled glycoproteins released into fibroblast culture medium were analysed by gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. These techniques demonstrated that the major fucosylated glycoprotein had an apparent mol.wt. of 230000–250000; several minor labelled species were also detected. 4. Dual-labelling experiments with [3H]fucose and 14C-labelled amino acids indicated that the major fucosylated glycoprotein was synthesized de novo by cultured fibroblasts. The non-collagenous nature of this glycoprotein was established by three independent methods. 5. Gel-filtration analysis before and after reduction with dithiothreitol showed that the major glycoprotein occurs as a disulphide-bonded dimer when analysed under denaturing conditions. Further experiments demonstrated that this glycoprotein was the predominant labelled species released into the medium when fibroblasts were incubated with [35S]cysteine. 6. The relationship between the major fucosylated glycoprotein and a glycoprotein, or group of glycoproteins, variously known as fibronectin, LETS protein, cell-surface protein etc., is discussed.  相似文献   

3.
Human platelet glycoproteins were isolated from whole platelets by two methods. The first method, that of affinity chromatography on wheat germ agglutinin, is based on the known affinity of lectins for cell surface glycoproteins. When solubilized whole platelets are used as starting material for this procedure, elution with N-acetylglucosamine yields primarily a glycoprotein of Mr ≈ 150 000 as estimated by sodium dodecyl sulfate-acrylamide gel electrophoresis. The second method is based on the ability of the chaotropic salt lithium diiodosalicylate to extract glycoprotein from particulate cell fractions in water-soluble form. This method yields three major glycopeptides with apparent molecular weights after sulfhydryl reduction of 145 000, 125 000, and 95 000 as estimated on 5.6% sodium dodecyl sulfate-acrylamide gels. Carboxymethylation of these preparations in the presence of sulfhydryl-reducing agent further resolves a glycoprotein of Mr ≈ 165 000.Treatment of whole platelets by periodate oxidation and sodium[3H]borohydride reduction labels the three major glycoproteins extracted by lithium diiodosalicylate and the glycoprotein of Mr ≈ 150 000 isolated on wheat germ agglutinin confirming their surface orientation. However, glycoprotein with Mr ≈ 165 000 resolved by carboxymethylation of the lithium diiodosalicylate extracted glycoprotein mixture was not labelled by this method, suggesting that it represents the granule protein with similar electrophoretic characteristics described by others.Phosphorylation of intact platelets with 32Pi also results in labelling of glycoproteins isolated by both methods, suggesting that these molecules traverse the  相似文献   

4.
A simple method is described that permitted rapid isolation of plasma membranes from mouse N-18 neuroblastoma cells. The purified plasma membranes gave a 10-fold increase in the specific activity of incorporated [3H]fucose over that of the cell homogenate. The specific activities of two other membrane markers, 5′-nucleotidase and alkaline phosphatase, increased 11-fold and 15-fold, respectively. Metabolic labeling with [3H]fucose identified a major fucosyl glycoprotein with apparent molecular weight of 92 000. Three surface labeling methods together with SDS-polyacrylamide gel electrophoresis and fluorography were used to characterize and compare the surface glycoproteins of undifferentiated and differentiated N-18 cells. The galactose oxidase/NaB3H4 method labeled two major galactoproteins (Mr = 52 000, 42 000) in both undifferentiated and differentiated cells. The neuraminidase/galactose oxidase/NaB3H4 method revealed many sialylgalactoproteins. Among them, the 220-kdalton, 150-kdalton and 130-kdalton bands were at least 100% more prominently labeled in the differentiated calls whereas the 76-kdalton and 72-kdalton bands were less prominently labeled in the differentiated cells when compared to their undifferentiated counterparts. The prominently iodinated protein bands in the undifferentiated cells had apparent molecular weights of 130 000, 92 000, 76 000 and 72 000 as compared to 150-, 130-, 92- and 76-kdalton bands in the differentiated cells. The labeling data obtained will enable us to further study the changes of these identified surface glycoproteins, both quantitatively and topologically, during the differentiation of neuroblastoma cells.  相似文献   

5.
The relative rate of turnover of individual membrane proteins and glycoproteins in exponentially growing and contact-inhibited MK2 cells was investigated. Plasma membranes were isolated from cells that had been sequentially labelled with 14C and 3H isotopes of leucine and glucosamine. The membranes were then solubilized in sodium dodecylsulfate and their polypeptides separated by acrylamide gel electrophoresis. The 3H/14C ratios of the individual polypeptides reflected their relative rates of turnover. The proteins and glycoproteins of the exponentially growing cells exhibited markedly heterogeneous rates of turnover. In contrast, polypeptides in membranes of contact-inhibited cells exhibited a lesser degree of heterogeneity of turnover. In both exponential and contacted cell membranes a glycoprotein with a high apparent molecular weight exhibited the fastest rate of turnover.  相似文献   

6.
The major glycoproteins of horse and swine erythrocyte membranes were isolated and examined chemically and immunologically. The major glycoprotein of horse erythrocyte membranes had a molecular weight of 33 000 and consisted of 46.2% protein and 53.8% carbohydrate, of which 9.4% was hexose, 10.1% hexosamine and 33.7% sialic acid. This glycoprotein was associated with activity for the infectious mononucleosis heterophile antigen.There were two different major glycoproteins in swine erythrocyte membranes. One major glycoprotein had a molecular weight of 46 200 and consisted of 34.2% protein and 65.8% carbohydrate, of which 18% was hexose, 19% hexosamine and 27.2% sialic acid. This glycoprotein had phytohemagglutinin (Phaseolus vulgaris) binding activity. The other glycoprotein had a molecular weight of 29 000 and consisted of 50.4% protein and 49.6% carbohydrate, of which 6.4% was hexose, 7.0% hexosamine and 36.3% sialic acid. This glycoprotein had weak or absent phytohemagglutinin binding activity.  相似文献   

7.
1. Non-desmosomal plasma membranes enriched in plasma-membrane marker enzymes and in metabolically labelled glycoproteins were isolated on a large scale from up to 500g of pig ear skin slices. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and periodic acid/Schiff staining revealed the presence of four major glycosylated components in the apparent molecular-weight range 150000–80000. 2. A large proportion of the marker enzymes, the d-[3H]glucosamine-labelled glycoproteins and the periodic acid/Schiff-stained glycoproteins were solubilized by 1% (w/v) sodium deoxycholate. However, several non-glycosylated proteins, in particular those with mol.wts. 81000, 41000 and 38000 (possibly cytoskeletal components), were relatively resistant to solubilization. 3. The deoxycholate-solubilized membranes were fractionated by lectin affinity chromatography using both concanavalin A–Sepharose 4B and lentil lectin–Sepharose 4B. From 75 to 85% of the applied glycoprotein was recovered from the columns. From 30 to 40% of the recovered glycoprotein was specifically bound by the lectins and was eluted with 2% (w/v) α-methyl d-mannoside. The enrichment of labelled glycoproteins in the material bound by the lectins (2.5-fold) was similar with both lectins, although the yield was somewhat greater when lentil lectin was used. The glycoprotein-enriched fraction was also enriched in all the plasma-membrane marker enzymes, indicating their probable glycoprotein nature. 4. The glycoprotein-enriched fraction contained the four major periodic acid/Schiff-stained bands that were detected in the original plasma membrane. They had apparent mol.wts. 147000, 130500, 108000 and 91400. The higher-molecular-weight components contained relatively more d-[3H]glucosamine, indicating differences in the sugar composition or in the metabolic turnover of the individual glycoproteins in culture. The material bound by the lectins also contained a number of lower-molecular-weight Coomassie Brilliant Blue-stained components. These were weakly stained by periodic acid/Schiff reagent and were lightly labelled with d-[3H]glucosamine, indicating that they contained less carbohydrate than the four major glycoprotein bands. 5. Chloroform/methanol-extracted plasma membranes and isolated glycoproteins had a similar carbohydrate composition, containing sialic acid, hexosamine, fucose, xylose, mannose, galactose and glucose. Glucose was not enriched in the isolated glycoproteins, suggesting that it may be a contaminant. Xylose, however, was enriched in the isolated glycoproteins. It remains to be established whether this sugar, which is not usually found in plasma-membrane glycoproteins, is a genuine constituent of plasma-membrane glycoproteins in the epidermis.  相似文献   

8.
ISOLATION AND CHARACTERIZATION OF MYELIN-RELATED MEMBRANES   总被引:17,自引:14,他引:3  
Abstract— Myelin related membrane fractions from rat brain and spinal cord were isolated from material normally discarded during standard myelin isolation procedures. A fraction which floated on 0.32 M-sucrose (F) and the material released after subjecting the myelin fraction to osmotic shock at two stages in the purification (W1 and W2) were characterized. These fractions were subjected to subfractionation on three step discontinuous sucrose gradients. Morphologically, the heavier subfrac-tions of W1 and W2 were shown to consist mainly of single membranes and vesicles. Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis showed that, relative to myelin, proteolipid and basic protein were reduced in all subfractions, while the high molecular weight proteins were increased. The specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) was up to 2-fold higher than that of myelin in the heavier subfractions of W1 and W2. The major myelin-associated glycoprotein was also increased in these subfractions as determined by periodic acid-Schiff staining. Differential centrifugation of the initial tissue homogenate to remove microsomes prior to myelin isolation gave rise to W1 and W2 subfractions with a CNP specific activity 3–4 times that of myelin. The high molecular weight proteins and glycoproteins were enriched in these microsome-depleted subfractions, but were qualitatively similar to those of myelin. Some of the membranes in these fractions may be derived from the continuum between the plasma membrane of the oligodendrocyte and compact myelin. Fraction F consisted of small membrane fragments and many vesicles, and was particularly deficient in proteolipid. The specific activity of CNP in fraction F was about the same as myelin, while the major myelin associated glycoprotein could not be detected. Fraction F from normal CNS tissue appears to be similar to the floating fractions previously isolated in larger amounts from pathological brain undergoing edematous demyelination.  相似文献   

9.
Previous work has shown that the 26S RNA found in Sindbis-infected chicken embryo fibroblasts encodes the three viral structural proteins, one internal protein, core, and two membrane glycoproteins, E1 and E2. This mRNA has one initiation site; core, E1, and E2 are derived by proteolytic cleavage. Here we show that during infection, the 26S RNA is found mainly in membrane-bound polysomes which synthesize all three virion structural proteins. These polysomes are released from the membrane upon treatment with puromycin and high salt. Newly synthesized core protein is localized on the cytoplasmic side of endoplasmic reticulum membranes, while newly synthesized envelope proteins are sequestered by the lipid bilayer. These results suggest that the nascent glycoproteins, presumably their amino termini, are of major importance in directing the binding of polysomes containing 26S mRNA to endoplasmic reticulum membranes and the subsequent transfer of glycoproteins into the bilayer.  相似文献   

10.
Affinity chromatography has been used to isolate and compare the peanut agglutinin receptors from neuraminidase-treated human, bovine and porcine erythrocyte membranes. Passage of Triton X-100-solubilised membrane material through either Sepharose- or acrylamide-based affinity columns resulted in the reversible binding of receptor molecules to the immobilised lectin. Elution with 0.2M galactose released specifically bound glycoprotein fractions, the composition and molecular weights of which were determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate.Carbohydrate analysis by gas chromatography identified these bound glycoprotein fractions as the major sources of the O-glycosidic-linked disaccharide galactosyl-β-(1 → 3)-N-acetylgalactosamine in these membranes. It is suggested that these isolated fractions represent a discrete population of glycoproteins within the membranes studied, which possess both O-glycosidic- and N-glycosidic-linked carbohydrates.  相似文献   

11.
Abstract— The incorporation of NeuNAc from CMP-NeuNAc into endogenous glycolipids and glyco-proteins, and exogenously added GM1a (monosialoganglioside) and desialylated fetuin (DS-fetuin) was studied with particulate preparations from 11 to 15 day old rat cerebra. The apparent +K++m values of the enzyme systems for the different substrates, assayed with 0.5 mg enzyme protein, were: CMP-NeuNAc, 0.13 mm (same with endogenous and exogenous glycolipid and glycoprotein substrates); GM1a, 0.20 mm ; DS-fetuin, 0.15 mm (or 1.2 mm in terms of acceptor sites). The activities, expressed as nmoles NeuNAc incorporated per 0.5 mg enzyme protein per 30 min incubation at 37°C and pH 6.3, were 0.094, 0.039, 0.17 and 0.64 with the endogenous glycolipids, endogenous glycoproteins, exogenous GM1a and exogenous DS-fetuin, respectively. Incorporation into endogenous glycolipids was mainly in GM3, while exogenously added GM1a was converted to GD1a. Incorporation into endogenous glycoproteins yields about 20 sialoglycopolypeptides on SDS-polyacrylamide gel electrophoresis. Neura-minidase pretreatment of the particulate enzyme preparation decreased sialylation of the higher molecule weight polypeptides but increased sialylation of the lower molecule weight species. The sialyltransferase activity with the endogenous glycolipid substrates was more heat resistant than the activities with exogenous GM1a. Since more than 60% of the endogenous glycolipid activity was due to the conversion of lactosylceramide to GM3, the sialyltransferase responsible for this reaction appears to be different from the one that acts on GM1a. This was supported by the observation that exogenously added GM1a did not diminish the incorporation of NeuNAc into endogenous lactosylceramide. These two glycolipid sialyltransferase activities were distinguishable from the glycoprotein sialyltransferase activity since exogenous DS-fetuin did not compete with either the endogenous or the exogenous glycolipids for CMP-NeuNAc.  相似文献   

12.
Phenol extraction of horse, sheep, cow, pig and human erythrocyte membranes and human milk fat globule membranes gave glycoprotein fractions, all of which were shown by gas chromatography to contain the reduced disaccharide β-d-galactosyl (1?3)-N-acetyl-d-galactosaminital after treatment with alkaline borohydride. Cow and pig erythrocyte membrane glycoproteins were found however to contain much lower amounts than the erythrocyte membrane glycoproteins of the other species tested. After gel filtration, a tetrasaccharide was isolated from horse and sheep glycoproteins containing the disaccharide plus two molecules of sialic acid. Periodate oxidation together with paper chromatography of alkaline degraded fragments showed these two molecules of sialic acid to be linked to positions C3 and C6 of the galactosyl and N-acetylgalactosamine residues respectively. Evidence was obtained for a similar structure from pig and cow erythrocyte glycoproteins and human milk fat globule membrane glycoproteins although the complete structure was not elucidated.In all native glycoprotein fractions, the unsubstituted disaccharide β-d-galactosyl (1?3)-N-acetyl-d-galactosamine was found to be present to different extents.Haemagglutination inhibition tests against human anti-T serum, Arachis hypogoea and Vicia graminea by desialylated glycoproteins showed the presence of the T-antigen, confirming the chemical findings. Inhibition was found to be proportional to the chemically detected amounts of disaccharide in each fraction. Evidence for a second carbohydrate chain in horse, sheep and human erythrocyte glycoproteins with a sialic acid substituted N-acetylgalactosamine residue as the terminal sequence was obtained using the agglutinin from Helix pomatia.  相似文献   

13.
Proteins entering the secretory pathway may be glycosylated upon transfer of an oligosaccharide (Glc3Man9GlcNAc2) from a dolichol-P-P derivative to nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). Oligosaccharides are then deglucosylated by glucosidases I and II (GII). Also in the ER, glycoproteins acquire their final tertiary structures, and species that fail to fold properly are retained and eventually degraded in the proteasome. It has been proposed that in mammalian cells the monoglucosylated oligosaccharides generated either by partial deglucosylation of the transferred compound or by reglucosylation of glucose-free oligosaccharides by the UDP-Glc:glycoprotein glucosyltransferase (GT) are recognized by ER resident lectins (calnexin and/or calreticulin). GT is a sensor of glycoprotein conformation as it only glucosylates misfolded species. The lectin-monoglucosylated oligosaccharide interaction would retain glycoproteins in the ER until correctly folded, and also facilitate their acquisition of proper tertiary structures by preventing aggregation. GII would liberate glycoproteins from the calnexin/calreticulin anchor, but species not properly folded would be reglucosylated by GT, and so continue to be retained by the lectins. Only when the protein becomes properly folded would it cease to be retained by the lectins. This review presents evidence suggesting that a similar quality control mechanism of glycoprotein folding is operative in Schizosaccharomyces pombe and that the mechanism in Saccharomyces cerevisiae probably differs substantially from that occurring in mammalian and Sch. pombe cells.  相似文献   

14.
M W Wong  J C Jamieson 《Life sciences》1979,25(10):827-833
Survival times of rat α1-acid glycoprotein were increased in the circulation of rats suffering from inflammation when compared with controls. Hepatic plasma membranes from rats suffering inflammation also had reduced capacities to bind asialo-α1-glycoprotein, but binding capacities increased to nearly normal values after washing with 0.01 M EDTA. One suggestion to explain the results is that there are elevated levels of circulating asialo glycoproteins during the acute phase response to inflammation.  相似文献   

15.
A high molecular weigh mucus glycoprotein has been isolated from submandibular saliva of caries-resistant and caries-susceptible individual by a procedure involving fractionation on Bio-Gel P-100 and A-50 columns followed by equilibrium density-gradient centrifugation in CsCl. The purified caries-resistant mucus glycoprotein displayed a buoyant density of 1.50 and accounted for 9.5% of the dry weight of caries-resistant saliva. The caries-susceptible mucus glycoprotein representd 14.1% of the dry weight of caries-susceptible saliva and gave a buoyant density of 1.43. Both glycoproteins exhibited similar protein and carbohydrate content, but the caries-resistant mucus glycoprotein contained 28.7% less associated lipids and 3-times less covalently bound fatty acids than the caries-susceptible mucus glycoprotein. The associated lipids were represented by neutral lipids, glycolipids and phospholipids, whereas the covalently bound fatty acids consisted mainly of hexadecanoate, octadecanoate and docosanoate. Extraction of associated lipids caused the caries-resistant glycoprotein to band in CsCl gradient at the density of 1.54 and caused the caries-susceptible glycoprotein to band at the density of 1.52. A further shift in the buoyant densities occurred following removal of the covalently bound fatty acids, and both glycoproteins banded at the density of 1.57. While the intact caries-resistant and caries-susceptibel glycoproteins were susceptible to proteolysis by pronase, the lipid-rich caries-susceptible glycoprotein was degraded to a lesser extent. Extraction of associated lipids increased the degradation of both glycoproteins, but the caries-susceptible glycoprotein still remained 25% less susceptible. However, the susceptibility to pronase of the delipidated and deacylated caries-resistant and caries-susceptible glycoproteins was essentially identical. The caries-resistant and caries-susceptible mucus glycoproteins also differed in susceptibility to peptic degradation. The apparent Km values for intact caries-resistant and caries-susceptible glycoproteins were 10.5 · 10−7 M and 8.1 · 10−7 M, while the values for the delipidated and deacylated caries-resistant and caries-susceptible glycoproteins were 13.0 · 10−7 M and 12.4 · 10−7 M. The results suggest that the differences in the content of associated lipids and covalently bound fatty acids are responsible for the different physicochemical characteristics of caries-resistant and caries-susceptible salivary mucus glycoproteins, which may be determining falctors in the resistance to caries.  相似文献   

16.
The effect of vitamin A deficiency onN-linked oligosaccharides of membrane glycoproteins was studied in rat liver in order to evaluate the suggested role of retinol in proteinN-glycosylation. First, oligosaccharides of newly synthesized glycoproteins from rough endoplasmic reticulum of vitamin A deficient liver were compared with that of pair-fed controls. Oligosaccharides were metabolically labelled withd-[2-3H]mannose, released from the glycoproteins with endoglycosidase H, purified by reversed phase HPLC and ion exchange chromatography, and were reduced with sodium borohydride. HPLC fractionation of the oligosaccharide alditols showed that the glycoproteins carried mainly four oligosaccharide species, Glc1Man9GlcNAc2, Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2, in identical relative amounts in the vitamin A deficient and the control tissue. In particular, no increase in the proportion of short chain oligosaccharides was noted in vitamin A deficient liver. Second, the number ofN-linked oligosaccharides was estimated in dipeptidylpeptidase IV (DPP IV), a major glycoprotein constituent of the hepatic plasma membrane, comparing the newly synthesized glycoprotein from rough endoplasmic reticulum and the mature form of DPP IV from the plasma membrane. No evidence was obtained that retinol deficiency caused incomplete glycosylation of this membrane glycoprotein. From these data, the suggested role of retinol as a cofactor involved in the synthesis ofN-linked oligosaccharides of glycoproteins must be questioned.Abbreviations DolP Dolichyl phosphate - DolPP dolichyl pyrophosphoryl - RetPMan retinyl phosphate mannose - DPP IV dipeptidyl peptidase IV (EC 3.4.14.5) - endo H endo--N-acetylglucosaminidase H (EC 3.2.1.96) - endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

17.
Zymogen granule membranes from the rat exocrine pancreas displays distinctive, simple protein and glycoprotein compositions when compared to other intracellular membranes. The carbohydrate content of zymogen granule membrane protein was 5–10-fold greater than that of membrane fractions isolated from smooth and rough microsomes, mitochondria and a preparation containing plasma membranes, and 50–100-fold greater than the zymogen granule content and the postmicrosomal supernate. The granule membrane glycoprotein contained primarily sialic acid, fucose, mannose, galactose and N-acetylglucosamine. The levels of galactose, fucose and sialic acid increased in membranes in the following order: rough microsomes < smooth microsomes < zymogen granules.Membrane polypeptides were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The profile of zymogen granule membrane polypeptide was characterized by GP-2, a species with an apparent molecular weight of 74 000. Radioactivity profiles of membranes labeled with [3H]glucosamine or [3H]leucine, as well as periodic acid-Schiff stain profiles, indicated that GP-2 accounted for approx. 40% of the firmly bound granule membrane protein. Low levels of a species similar to GP-2 were detected in membranes of smooth microsomes and the preparation enriched in plasma membranes but not in other subcellular fractions. These results suggest that GP-2 is a biochemical marker for zymogen granules.Membrane glycoproteins of intact zymogen granules were resistant to neuraminidase treatment, while those in isolated granule membranes were readily degraded by neuraminidase. GP-2 of intact granules was not labeled by exposure to galactose oxidase followed by reduction with NaB3H4. In contrast, GP-2 in purified granule membranes was readily labeled by this procedure. Therefore GP-2 appears to be located on the zymogen granule interior.  相似文献   

18.
Erythrocyte membranes from several species were prepared by three different methods of hypotonic hemolysis and examined for variations in protein and glycoprotein content by acrylamide gel electrophoresis in sodium dodecyl sulfate. Significant variations were noted in morphology of the membranes prepared by the different methods without attendant variations in protein patterns of the major membrane proteins for most cases observed, which show a similar pattern of nine common bands for all of the species observed. The significant difference in protein pattern which was noted was attributed to proteolytic digestion of membranes which were fragmented during preparation. Failure to remove white blood cells from membrane preparations was shown to be a significant source of the problem with proteolytic digestion. Glycoproteins were analyzed by acrylamide gel electrophoresis or by column chromatography. Each species appears to have a different major glycoprotein (or group of closely related glycoproteins). Molecular weights of glycoproteins calculated from acrylamide gel electrophoresis were found to vary with the percentage of acrylamide in the gel, indicating that these proteins do not behave in a normal fashion in this electrophoresis system. The molecular weight calculated from gel filtration data for the human membrane glycoproteins (26,000) was quite disparate from those calculated from gel electrophoresis (88,000 to 62,000 in 5 to 10% gels).  相似文献   

19.
1. Glycoproteins of bovine (Bos taurus) and human (Homo sapiens) milk lipid globule membranes were characterized by ability to bind lectins after electrophoretic separation. 2. Seven lectin receptor glycoproteins were detected in bovine and five in human milk lipid globule membranes. Bovine and human globule membrane glycoproteins differed in ability to interact with certain lectins. 3. Two major nonionic detergent insoluble glycoproteins were present in bovine and human lipid globule membrane; these constituents had apparent molecular weights of 155,000 and 69,000. Detergent-insoluble polypeptides with similar or identical electrophoretic mobilities were found in milk lipid globule membranes from four other species, rat (Rattus norvegicus), sheep (Ovis aries), pig (Sus scrofa) and goat (Capra hircus). Tryptic peptide mapping revealed these polypeptides to be nonidentical among species.  相似文献   

20.
Binding of triiodothyronine(T3) to submitochondrial fractions from rat kidney was studied. Both inner and outer mitochondrial membranes were purified by sucrose gradient centrifugation. Both membranes had specific binding sites for T3. Scatchard analysis of T3 binding by membranes gave different affinity constants between inner and outer membranes. In studies with gel filtration of soluble T3 receptors, four main T3 binding activities in outer membranes and two main T3 binding activities in inner membranes were isolated. The results indicate that both inner and outer mitochondrial membranes have specific binding sites for T3 and that each membrane has a specific structure in T3 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号