首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abundance and relative importance of autotrophic picoplankton were investigated in two lakes of different trophic status. In the eutrophic lake, measurements of primary production were performed on water samples in situ and in a light incubator three times during the day whereas for the oligotrophic lake, only one measurement of primary production was performed on water samples in the incubator. Dark-carbon losses of phytoplankton from Lake Loosdrecht were investigated in time series. Cell numbers of autotrophic picoplankton in eutrophic Lake Loosdrecht (3.2 × 104 cells ml–1) were lower than in meso-oligotrophic Lake Maarsseveen (9.8 and 11.4 × 104 cells ml–1 at the surface and bottom respectively). In the phytoplankton of both lakes the ratio of picoplankton production increased with decreasing light intensity. In Lake Loosdrecht depth-integrated contribution of picoplankton to total photosynthesis was less than 4%. The P-I-relationship showed diurnal variations in light saturated photosynthesis, while light limited carbon uptake remained constant during the day. Dark carbon losses from short-term labelled phytoplankton during the first 12 hours of the night period accounted for 10–25% of material fixed during the preceeding light period.  相似文献   

2.
In situ growth of heterotrophic nanoflagellates (HNF) in Lake Donghu, a eutrophic shallow lake in mainland China, was studied from January 1999 to March 2000 using a modified Weisse protocol. The study results indicated that the growth rates of HNF showed pronounced seasonal variation (–0.37–1.25 d–1), reaching the maximum during spring to early summer. When the water temperature was higher than 25.5°C, HNF growth was inversely proportional to water temperature. There was an effect by bacterial abundance and autotrophic picoplankton on HNF growth that depended on location. HNF biomass was the highest in late spring, and the HNF production ranged from –2.25 to 35.45 mg l–1 d–1 with mean of 3.17 mg l–1d–1. When considered in the context of biomass and production data for zooplankton in Lake Donghu, it was evident that HNF contributed significantly to the total zooplankton production in Lake Donghu. These in situ studies indicate that temperature and food supply are the major determinants of HNF abundance and productivity.  相似文献   

3.
Reassessement of bioenergetic growth yield of Arthrospira platensis was performed by using continuous culture under both autotrophic and mixotrophic conditions. Continuous culture was carried out at dilution rates of 0.017, 0.023 and 0.030 h–1. Under these dilution rates bioenergetic yields ranged between 4.45–6.03 × 10–3 g biomass kJ–1 and between 5.42–7.46 × 10–3 g biomass kJ–1, under autotrophic and mixotrophic conditions respectively. A maximum bioenergetic yield of 8.1 × 10–3 g biomass kJ–1 using an autotrophic culture can be calculated. Pigment accumulation (chlorophyll a and carotenoids) may be related to light irradiance, reaching a maximum pigment concentration under light saturation irradiance. Phycocyanin concentration increased during light limitation.  相似文献   

4.
Toxic dinoflagellates are important in natural ecosystems and are ofglobal economic significance because of the impact of toxic blooms onaquaculture and human health. Both the organisms and the toxins they producehave potential for biotechnology applications. We investigated autotrophicgrowth of a toxic dinoflagellate, Alexandrium minutum, inthree different high biomass culture systems, assessing growth, productivityandtoxin production. The systems used were: aerated and non-aerated2-L Erlenmeyer flasks; 0.5-L glass aerated tubes; anda 4-L laboratory scale alveolar panel photobioreactor. A range ofindicators was used to assess growth in these systems. Alexandriumminutum grew well in all culture conditions investigated, with amarked increase in both biomass and productivity in response to aeration. Thehighest cell concentration (4.9 × 105 cellsmL–1) and productivity (2.6 ×104cells mL–1d–1) was achieved inthe aerated glass culture tubes. Stable growth of A.minutum in the laboratory scale alveolar panel photobioreactor wasmaintained over a period of five months, with a maximum cell concentration of3.3 × 105 cells mL–1, a meanproductivity of 1.4 × 104 cells mL–1d–1, and toxin production of approximately 20g L–1 d–1 with weeklyharvesting.  相似文献   

5.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

6.
Dynamics of bacterioplankton in a mesotrophic French reservoir (Pareloup)   总被引:1,自引:1,他引:0  
Bacterioplankton abundance, biomass and production were studied at a central station (35 m depth) from April 1987 to September 1988 in a mesotrophic reservoir. Bacterial production was calculated by the (3H) thymidine method.For the water column, integrated estimates of bacterioplankton abundance ranged from 2.3 109 to 4.6 109 cells l–1, and carbon biomass from 0.037 to 0.068 mg C l–1; the thymidine incorporation rates ranged from 0.8 to 17.2 picomoles l–1 h–1, leading to net bacterial production estimates of less than 0.7 µg C l–1 d–1 in winter to 18 µg C l–1 d–1 in summer. About 55% of the production occurred in the euphotic layers.Over the year, the bacterial carbon requirement represented 90% of the autotrophic production for the whole lake. It was five times lower than autotrophic production in spring, but twice as high in summer. This important temporal lack of balance suggests that not all the spring primary production products are consumed immediately and/or that other carbon sources probably support bacterial growth in summer.  相似文献   

7.
A factorial experimental design with two nutrient concentrations (2 and 4 mmol Nl–1 in the form of NaNO3) and five rates of daily renewal of the cultures (10%, 20%, 30%, 40% and 50%) was carried out in cyclostat, light/dark-synchronized cultures of the marine microalga Dunaliella tertiolecta Butcher. Steady-state cellular density was a linear function inversely proportional to renewal rate. Maximal cellular productivity, 3 × 109 cells1–1 day–1, equivalent to 0.24 g1–1 day–1 dry weight and 0.17 g1–1 day–1 organic weight, was found with renewal rates of 20%–30% and 4mmol N1–1, but maximal protein productivity, 0.066 g1–1 day–1, was obtained with a renewal rate of 40% for both nutrient concentrations. The protein content ranged between 30% and 70% of the organic fraction depending on the culture conditions. Carbohydrates were the only fraction accumulating in response to nutrient stress, ranging from 57% to 10% of the organic fraction, meanwhile the lipid content was increased by increase of nutrient availability. Under non-nitrogen-limited conditions the C:N ratio stabilized around 5.2–5.3 and the protein content of the organic fraction around 70%, but the cell nitrogen quota decreased under these conditions with increasing renewal rates, owing to the lower organic content of cells obtained with high growth rates. The high capacity for changing the biochemical composition, demonstrated for D. tertiolecta in the cyclostat system, has interesting implications for the management of continuous cultures of microalgae and its applications in biotechnological processes.  相似文献   

8.
Bacterial productivity and microbial biomass in tropical mangrove sediments   总被引:14,自引:0,他引:14  
Bacterial productivity (3H-thymidine incorporation into DNA) and intertidal microbenthic communities were examined within five mangrove estuaries along the tropical northeastern coast of Australia. Bacteria in mangrove surface sediments (0–2 cm depth) were enumerated by epifluorescence microscopy and were more abundant (mean and range: 1.1(0.02–3.6)×1011 cells·g DW–1) and productive (mean: 1.6 gC·m–2· d–1) compared to bacterial populations in most other benthic environments. Specific growth rates (¯x=1.1) ranged from 0.2–5.5 d–1, with highest rates of growth in austral spring and summer. Highest bacterial numbers occurred in winter (June–August) in estuaries along the Cape York peninsula north of Hinchinbrook Island and were significantly different among intertidal zones and estuaries. Protozoa (105–106·m–2, pheopigments (0.0–24.1g·gDW–1) and bacterial productivity (0.2–5.1 gC·m–2·d–1) exhibited significant seasonality with maximum densities and production in austral spring and summer. Algal biomass (chlorophylla) was low (mean: 1.6g·gDW–1) compared to other intertidal sediments because of low light intensity under the dense forest canopy, especially in the mid-intertidal zone. Partial correlation analysis and a study of possible tidal effects suggest that microbial biomass and bacterial growth in tropical intertidal sediments are regulated primarily by physicochemical factors and by tidal flushing and exposure. High microbial biomass and very high rates of bacterial productivity coupled with low densities of meiofaunal and macroinfaunal consumers observed in earlier studies suggest that microbes may be a sink for carbon in intertidal sediments of tropical mangrove estuaries.  相似文献   

9.
The chemical and biological conditions, and the bacteria-heterotrophic nanoflagellate (HNF) relationship were investigated in the vicinity of Funka Bay, southwest of Hokkaido, Japan during early spring 1999. At the time of sampling, chlorophyll a concentration, bacteria, phycoerythrin rich-cyanobacteria, and HNF abundance were in the following ranges: 0.3–3.6 g l–1, 2.5–5.6 × 105 cells ml–1, 0.6–1.2 × 103 cells ml–1, and 2.2–4.2 × 103 cells ml–1, respectively. Dissolved inorganic nitrogen, phosphate and silicate concentrations were in the ranges: 8.7–12.2 M, 0.9–2.0 M, and 21.6–25.5 M, respectively. Primary production ranged from 6.4 to 76.3 mg C m–3 d–1. Using water samples from regions of different productivity levels (in and outside bay), the bacteria - HNF relationship was uncoupled experimentally by the size-fractionation technique. Higher primary production (19.9 mg C m–3 d–1) in the bay supported higher bacterial growth rate (0.029 h–1). However, outside the bay both primary production (6.4 mg C m–3 d–1) and bacterial growth rate (0.007 h–1) were lower. The HNF growth rates and grazing rates were similar for both but by comparing both HNF grazing capacity and bacterial production, there was net decrease in bacterial abundance outside the bay and net increase inside the bay. The microbial parameters (rates and abundance) and the amount of carbon flow estimated through the phytoplankton – dissolved organic matter (DOM) – bacteria loop were different between the coastal station and the open ocean station. However HNF grazing and growth rates was similar for both stations.  相似文献   

10.
A transect along the axis of the headwaters of a tidal estuary was sampled for microbial, nutrient, and physical parameters. Chlorophylla averaged 42g 1–1 and phytoplankton comprised an estimated 80% of the total microbial biomass as determined by adenosine triphosphate (ATP). Bacterial concentrations ranged from 0.3–53.9×106 cells ml–1 and comprised about 4% of the total living microbial biomass. Bacterial production, determined by3H-methyl-thymidine incorporation was about 0.05–2.09× 109 cells 1–1 h–1, with specific growth rates of 0.26–1.69 d–1. Most bacterial production was retained on 0.2m pore size filters, but passed through 1.0m filters. Significant positive correlations were found between all biomass measures and most nutrient measures with the exception of dissolved inorganic nitrogen nutrients where correlations were negative. Seasonal variability was evident in all parameters and variability among the stations was evident in most. The results suggest that bacterial production requires a significant carbon input, likely derived from autotrophic production, and that microbial trophic interactions are important.  相似文献   

11.
Summary A test system was set up where the build-up of a biofilm on a defined surface could be studied in a carbon source limited chemostat.The attachment of P. putida ATCC 11172 to glass when growing on L-asparagine was studied at different dilution rates (specific growth rates) from 0.1 to 1.5 h–1 The number of attached colony forming units (cfu) increased with dilution rate from 1×106 cfu/cm2 at 0.1 h–1 to 4×107 cfu/cm2 at 1.0 h–1 and then the attachment decreased to about 6×106 cfu/cm2 at higher dilution rates (1.1–1.5 h–1). The number of attached cfu was measured after 24 h exposure. The value of the maximum specific growth rate in batch culture was 0.6 h–1.The total amount of attached cell-mass followed roughly the same pattern as the viable count.The viable count of the cells suspended in the growth medium showed its lowest value at the same dilution rate as resulted in maximum adhesion.It was shown that the effect of growth rate on the biofilm build-up of P. putida is significant, and ought to be borne in mind when continuous culture systems are set up and results evaluated.  相似文献   

12.
Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth   总被引:5,自引:0,他引:5  
The microalga Haematococcus pluvialis was cultured with NaNO3 from 0 to 1 g l–1 and optimal growth was obtained at 0.15 g l–1. Sodium acetate and malonate (from 0 to 2% w/v) enhanced the accumulation of astaxanthin three and five times higher, respectively, than in autotrophic control cultures. However, high concentration of those compounds strongly inhibited growth. The ratio chlorophyll a/total carotenoids was a good indicator of the extent of nitrogen deficiency in the cells.  相似文献   

13.
The prey ofSpongaster tetras tetras, determined by transmission electron microscopic examination of ultrathin sections through food and digestive vacuoles, was predominantly picoplankton (1 to 3 μm, largely monerans) and only occasional vacuoles contained masses of larger digested organic matter. By contrast, Nassellarian specimens collected in the same location and fixed and examined identically contained nanoplankton prey (5–10 μm) including small phytoplankton cells. The differences in prey may reduce competition for nutritional resources and account for the co-existence of these two groups of radiolaria in the same water mass. The primary productivity of the symbionts in intactS. tetras tetras was assessed at varying light levels to more fully document potential sources of carbon compounds for nutrition. Thirty-five μg of carbon were fixed per radiolarian per hour at an intensity as low as 20 μE/m2/s which is approximately one-third the maximum productivity in the intensity range of 170 to 260 μE/m2/s. The mean abundance ofS. tetras tetras, density of potential prey, and physico-chemical characteristics of the water are presented for early spring (March–April), mid-summer (June and July), and late summer (August). The mean density ofS. tetras tetras varied from c. 12 individuals/m3 during the low productivity periods (spring and late summer) to 37.8 individuals/m3 in July. The concentration of cyanobacteria was at a peak during July while larger autotrophic plankton was at a minimun further suggesting that cyanobacteria can be a significant food source forS. tetras tetras.  相似文献   

14.
Three methods of estimating bacterial productivity were compared using parallel samples of Atlantic Ocean water (within 0.25–15 km of the Georgia coast). The frequency-of-dividing cells (FDC) method and the [3H]thymidine incorporation method gave results which were strongly correlated (r=0.97), but the FDC estimates were always higher (X2 to X7) than the [3H]thymidine estimates. Estimates of bacterial productivity ranged from 2–4×108 cells·l–1·h–1 at 0.25 km from shore to 1–9×107cells·l–1·h–1 at 15 km. A method involving incubation of 3-m filtrates and direct counting gave results that could not be easily translated into estimates of bacterial productivity. Application of the FDC method to sediment samples gave high productivity estimates, which could be not reconciled with productivity estimates based on sediment oxygen uptake.  相似文献   

15.
Estimates of bacterial production based on total trichloroacetic acid (TCA)-precipitable [methyl-3H]thymidine incorporation and frequency of dividing cell (FDC) techniques were compared to sediment respiration rates in Lake George, New York. Bacterial growth rates based on thymidine incorporation ranged from 0.024 to 0.41 day–1, while rates based on FDC ranged from 1.78 to 2.48 day–1. Respiration rates ranged from 0.11 to 1.8mol O2·hour–1·g dry weight sediment–1. Thymidine incorporation yielded production estimates which were in reasonable agreement with respiration rates. Production estimates based on FDC were 4- to 190-fold higher than those predicted from respiration rates.  相似文献   

16.
The phytoplankton dynamics of a Chinese integrated fish culture pond in the suburbs of Shanghai were studied in September and October 1989. The chlorophyll a concentration was high with a range of 62.5–127.3 µg l–1; however, daily net production of phytoplankton was relatively low, with a range of 0.53–1.94 gC m –2 d–1. Of the total phytoplankton biomass, 70–87% was composed of nanoplankton (<10 µm) and picoplankton, probably because of the selective feeding by phytoplanktivorous carp. In particular, the chlorophyll a concentration of picoplankton was 2.1 – 14.1 mg m –3, and its contribution to total phytoplankton production rate was high (18–68%).  相似文献   

17.
A simple enzyme mixture containing 2% Cellulase Onozuka R–10 and1% Macerozyme R–10 prepared in deionised water supplemented with 3% NaCland 1 mM CaCl2 was developed for isolating rapidlyprotoplasts from different species of Monostroma,Enteromorpha and Ulva. The yield fordifferent species of Monostroma ranged from 9.6 ×106 to 10.2 × 106 cells g–1f. wt thallus, and forEnteromorpha from 3.48 × 106 to 11.7× 106 cells g–1 f. wt and forUlva from 4.58 × 106 to 26.8 ×106 cells g–1 f. wt. The overallregeneration rate of the protoplasts isolated was usually > 90% and showednormal morphogenesis. The method yields rapid mass production of viableprotoplasts with high regeneration rates.  相似文献   

18.
Summary Estimates of bacterial numbers from raw sewage sludge and sludge treated by thermophilic aerobic digestion were compared with simple indicators of sludge quality and concentrations of potential substrates. Significant differences were found between sludge types for all but one of the variables examined (frequency of dividing cells). During a stable period of digestor operation, the average number of viable obligate thermophiles present in digested sludge (1.63 × 106 ml–1) was approximately 102-fold greater than in feed sludge (1.10 × 104 ml–1). Total numbers of bacteria were slightly greater in digested sludge (3.24 × 1010 ml–1) than in feed sludge (2.39 × 10 ml–10), as were viable counts of bacteria at incubation temperatures of 37°C and 55°C. Significant correlation was found between viable counts of bacteria at 37°C and 55°C for digested sludge, and 65°C and 55°C for feed sludge. The numbers of obligate thermophiles present and the total of bacteria present were related to the temperature and pH of the digested sludge and inversely related to the numbers ofEscherichia coli and coliforms present, which were not detected at temperatures greater than 50°C.  相似文献   

19.
The turnover times of glucose, averaged for 0–10 m in the upper waters of Lake Kinneret and measured by the addition of single or multiple concentrations of substrate, ranged from 23 to 188 hours and 1 to 87 hours respectively. Potential uptake rates (estimated as Vmax) ranged from 0.095 to 1.94 µg glucose l–1h–1, while measured uptake rates varied from 0.09 to 1.1 µg glucose l–1h–1. Concentrations of dissolved carbohydrates and glucose averaged 0.71 mg glucose equivalents l–1 and 39 µg glucose l–1 respectively. No evident relationships between glucose cycling and any fractions of dissolved organic matter, phytoplankton biomass or primary productivity were found. Turnover times were generally most rapid immediately after the decline of the spring Peridinium bloom. The respiration percentage of incorporated glucose ranged from 25% to 61% with highest values during the summer months. Respiration may be influenced by the nature of the indigenous bacterial population as well as by temperature. Daily heterotrophic glucose carbon uptake was about 9% of the photosynthetic incorporation and could provide a bacterial yield of about 7 × 104 ml–1d–1.  相似文献   

20.
The population growth pattern and related changes in both the nitrogen and phosphorus contents in the cell of the dinoflagellate Peridinium penardii (Lemm.) Lemm., which formed a freshwater red tide in a reservoir, were studied in situ. An exponential increase with time in population density was found. A specific growth rate of 0.25 d–1 was observed. The cellular content of phosphorus per cell decreased from 6.0 × 10–5 µg to 9.2 × 10–6 µg along with an increase in population density from 8.0 × 102 cells ml–1 to 2.5 × 104 cells ml–1. A prominent change in the cellular nitrogen did not occur. Decreasing cell content and continuous uptake of phosphorus were advantageous for P. penardii to form a freshwater red tide under P-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号