共查询到20条相似文献,搜索用时 10 毫秒
1.
Gibberellin-enhanced indole-3-acetic acid biosynthesis: D-Tryptophan as the precursor of indole-3-acetic acid 总被引:1,自引:0,他引:1
David M. Law 《Physiologia plantarum》1987,70(4):626-632
Stem segments excised from light-grown Pisum sativum L. (cv. Little Marvel) plants elongated in the presence of indole-3-acetic acid and its precursors, except for L-tryptophan, which required the addition of gibberellin A, for induction of growth. Segment elongation was promoted by D-tryptophan without a requirement for gibberellin, and growth in the presence of both D-tryptophan and L-tryptophan with gibberellin A3, was inhibited by the D-aminotransferase inhibitor D-cycloserine. Tryp-tophan racemase activity was detected in apices and promoted conversion of L-tryptophan to the D isomer; this activity was enhanced by gibberellin A3. When applied to apices of intact untreated plants, radiolabeled D-tryptophan was converted to indole-3-acetic acid and indoleacetylaspartic acid much more readily than L-tryptophan. Treatment of plants with gibberellin A3, 3 days prior to application of labeled tryptophan increased conversion of L-tryptophan to the free auxin and its conjugate by more than 3-fold, and led to labeling of N-malonyl-D-tryptophan. It is proposed that gibberellin increases the biosynthesis of indole-3-acetic acid by regulating the conversion of L-tryptophan to D-tryptophan, which is then converted to the auxin. 相似文献
2.
Park WJ Kriechbaumer V Möller A Piotrowski M Meeley RB Gierl A Glawischnig E 《Plant physiology》2003,133(2):794-802
We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward beta-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least seven to 20 times more efficiently than AtNIT1/2/3. Quantitative real-time polymerase chain reaction revealed the gene expression of both nitrilases in maize kernels where high concentrations of IAA are synthesized tryptophan dependently. Nitrilase protein and endogenous nitrilase activity are present in maize kernels together with the substrate IAN. These results suggest a role for ZmNIT2 in auxin biosynthesis. 相似文献
3.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA. 相似文献
4.
Oxindole-3-acetic acid (OxIAA) has been identified in germinating seeds of Scots pine (Pinus sylvestris) using gas chromatography-mass spectrometry. Seeds germinated for 5 d contained 2.7 ng OxIAA·g-1 (dry weight) whereas ungerminated seeds contained 0.2 ng·g-1. Isotopically labelled OxIAA was formed in seeds incubated with [1-14C]-, [2-14C]- or [2H5]indole-3-acetic acid.Abbreviations DDC
sodium diethyldithiocarbamate
- GC
gas chromatography
- HPLC
high-performance liquid chromatography
- IAA
indole-3-acetic acid
- MS
mass spectrometry
- OxIAA
oxindole-3-acetic acid
- PVP
polyvinylpyrrolidone
- TMS
trimethylsilyl 相似文献
5.
The uptake and metabolism of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were studied in suspension cell cultures of Petunia hybrida. The initial uptake of 3H-IBA was much higher than that of 3H-IAA, and after 10 min of incubation with labeled IBA and IAA, 4.6 pM vs 0.35 (39% vs 12% of total applied radioactivity) respectively, were found in the cell extracts. The uptake of IBA reached a plateau of 6.0 pM (62%) after 2 h while that of IAA increased continuously up to 1.5 pM (46%) after 24 h. Following the addition of 40 µM of unlabeled auxin more IBA was taken in initially than IAA (39% vs 12%), but the level almost equalized after 24 h of incubation when IBA uptake reached 890 nM (55%) and IAA 840 nM (46%).IBA was metabolized very rapidly by Petunia cell suspension to new compounds. HPLC of the cell extracts demonstrated a new metabolite after only 2 min of incubation, and after 30 min 60% of the radioactivity was in the new metabolite vs 10% in the IBA. The new compound was resolved by autofluorography to two metabolites but after 24 h only one metabolite was present. The IBA metabolites were identified tentatively as IBA aspartic acid (IBAasp) and IBA glucose (IBAglu). In the medium IBA disappeared at a fast rate and after 24h most of the radioactivity was present in the new metabolite, probably IBAasp. IAA was also converted rapidly to two new metabolites and both were still present after 24 h. No attempt was made to identify the metabolites of IAA. IAA metabolism proceeded at a slower rate, and autofluorography showed that while free IBA disappeared after 0.5 h, free IAA was still present after 1 h of incubation. We postulate that Petunia cells conjugate IBA rapidly to IBAglu which in turn is converted to form IBAasp which probably acts as a slow release hormone. Only intact cells were able to metabolize IBA and the reaction was affected by low temperature and anaerobic conditions. The fast rate of IBA uptake, the need for whole cells for the metabolism to proceed, and the fast change of IBA to a new metabolite in the medium, all suggest that both uptake and metabolism of IBA in Petunia cells occur on the cell surface. 相似文献
6.
A search was made for conjugates of indole-3-acetic acid (IAA) in rice (Oryza sativa) using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in order to elucidate unknown metabolic pathways for IAA. N-beta-d-Glucopyranosyl indole-3-acetic acid (IAA-N-Glc) was found in an alkaline hydrolysate of rice extract. A quantitative analysis of 3-week-old rice demonstrated that the total amount of IAA-N-Glc was equal to that of IAA. A LC-ESI-MS/MS-based analysis established that the major part of IAA-N-Glc was present as bound forms with aspartate and glutamate. Their levels were in good agreement with the total amount of IAA-N-Glc during the vegetative growth of rice. Further detailed analysis showed that both conjugates highly accumulated in the root. The free form of IAA-N-Glc accounted for 60% of the total in seeds but could not be detected in the vegetative tissue. An incorporation study using deuterium-labeled compounds showed that the amino acid conjugates of IAA-N-Glc were biosynthesized from IAA-amino acids. IAA-N-Glc and/or its conjugates were also found in extracts of Arabidopsis, Lotus japonicus, and maize, suggesting that N-glucosylation of indole can be the common metabolic pathway of IAA in plants. 相似文献
7.
The complex of bioelectrical paramenters (membrane potential, membrane resistance and capacitance) of internodal cells of Nitellopsis obtusa was measured over a wide range of IAA concentration (10−10 to 10−4 M ) with two intracellular microelectrodes. Primary effects of IAA at a concentration as low as 10−10 M were observed. The optimum range of IAA action was from 10−9 to 10−6 M . The type of IAA-induced electroresponse depended on the initial level of membrane potential, which characterized the energetic state of the plasmalemma. In the energized state (ca −200 mV) N. obtusa cells appeared to have 3 typical reactions: hyperpolarization (membrane potential less than K+ -equilibrium potential), depolarization (membrane potential higher than K+ -potential) and absence of response at K+ -electrochemical equilibrium. Membrane capacitance was found constant at 0.74 ± 0.05 μF cm−2 , but membrane resistance increased up to 50% independently of the sign of the electrogenic reaction. Increase of membrance capacitance and decrease of the membrane resistance was a feature of the de-energized state (ca −135 mV) and may be explained by lower viscosity of membrane lipids, which interacted with IAA. The complex of parameter, including cytoplasmic steaming taken as an indicator of energy supply, is discussed as indicating slow IAA penetration combined with a primary action of IAA on the plasmalemma receptor sites. 相似文献
8.
E Prinsen N Chauvaux J Schmidt M John U Wieneke J De Greef J Schell H Van Onckelen 《FEBS letters》1991,282(1):53-55
Flavonoids activate nod gene expression in Rhizobium resulting in the synthesis of Nod signals which trigger organogenesis in the host plant. This paper shows that nod-inducers also stimulate the production of the phytohormone IAA (indole-3-acetic acid). 相似文献
9.
The short-term response of green pea stem segments to indole-3-aceticacid (IAA) was investigated by continuously recording stem elongationwith a differential transformer. Stem segment elongation promotedby IAA began following a latent period after application. Thelatent period was more effectively shortened by raising thetemperature rather than the concentration of IAA; it was reducednearly to 0 min by treatment at 40?C. The length of the latentperiod was not affected by turgor pressures of stem cells, thoughthe rate of stem growth was diminished at lower turgor pressures.Stems pretreated with actinomycin D for 60 min, cycloheximidefor 30 min or colchicin for 6 hr were similar to untreated stemsin their short term response to IAA. This implies that the initiallypromoted elongation does not result from the activity of enzymessynthesized during the latent period by the action of IAA. (Received April 5, 1973; ) 相似文献
10.
Ishii T Soeno K Asami T Fujioka S Shimada Y 《Bioscience, biotechnology, and biochemistry》2010,74(11):2345-2347
Previously we identified aminooxy compounds as auxin biosynthesis inhibitors. One of the compounds, aminooxyacetic acid (AOA) inhibited indole-3-acetic acid (IAA) biosynthesis in rice and tomato. Here, we found that AOA induced auxin over-accumulation in Arabidopsis. The results suggest that auxin-related metabolic pathways are divergent among these plant species. 相似文献
11.
Thirteen endophytic fungi were isolated from roots of three orchid species, Spathoglottis affinis, Paphiopedelum bellatulum and Phaius tankervilleae. Of these, three fungal isolates produced high levels of indole-3-acetic acid (IAA) in culture medium supplemented with 2 mg/ml
of L-tryptophan, and were selected for further analysis. Morphological characteristics and a phylogenetic analysis based on
an alignment of internal transcribed spacer regions of nuclear rDNA indicated that the fungal isolates CMU-SLP 007 and CMU-NUT
013 belonged to family Tulasnellaceae, genus Tulasnella (the anamorphic genus Epulorhiza) and the fungal isolate CMU-AU 006 belonged to Colletotrichum gloeosporioides. These three fungal isolates produced maximum levels of IAA when grown in a culture medium supplemented with 4 mg/ml of L-tryptophan
(C. gloeosporioides CMU-AU 006, 243.56 μg/ml and Tulasnella sp. CMU-SLP 007, 155.63 μg/ml) and 6 mg/ml of L-tryptophan (Tulasnella sp. CMU-NUT 013, 104.03 μg/ml). Thin layer chromatography revealed that all fungal IAA presented the same Rf value as the standard IAA. The biological activity of fungal IAA showed that it increased the length of stem forming roots
and the number of roots of kidney bean (Phaseolus vulgaris), promoted seed germination, the length of roots and root to shoot ratio of corn (Zea mays) and increased the elongation of rice (Oryza sativa) coleoptiles when compared with all controls (water and culture medium treatments). In addition, the results of all biological
activities using fungal IAA indicated that the quality of fungal IAA were similar to standard IAA. 相似文献
12.
Plants are suggested to produce their major growth promoting phytohormone, indole-3-acetic acid (IAA), via multiple redundantly operating pathways. Although great effort has been made and plenty of possible routes have been proposed based on experimental evidence, a complete pathway for IAA production has yet to be demonstrated. In this study, an in-vitro approach was taken to examine the conversion of l-tryptophan (l-trp) to IAA by gas chromatography-mass spectrometry (GC-MS). Especially the influence of putative reaction intermediates on the enzymatic conversion of l-trp to IAA was analyzed. Among the substances tested only indole-3-acetamide (IAM) showed a pronounced effect on the l-trp conversion. We additionally report that IAM is synthesized from l-trp and that it is further converted to IAA by the utilized cell free Arabidopsis extract. Together, our results underscore the functionality of an IAM-dependent auxin biosynthesis pathway in Arabidopsis thaliana. 相似文献
13.
Indole-3-methanol is a product of indole-3-acetic acid metabolism in wheat leaves ( Triticum compactum Host., cv. Little Club). It leads either to the production of the corresponding aldehyde and carboxylic acid, to the production of a polar glucoside which releases indole-3-methanol on β-glucosidase treatment, or to an unidentified apolar product on mild alkaline hydrolysis in aqueous methanol. With reference to a published pathway of indole-3-acetic acid degradation, the results provide evidence for a prominent role of indole-3-methanol and also for the occurrence of co-oxidation processes in wheat leaves involving indole-3-acetic acid and phenolic cosubstrates. 相似文献
14.
15.
The ability of cyanobacteria to produce the phytohormone indole-3-acetic acid (IAA) was demonstrated. A colorimetric (Salkowski) screening of 34 free-living and symbiotically competent cyanobacteria, that represent all morphotypes from the unicellular to the highly differentiated, showed that auxin-like compounds were released by about 38% of the free-living as compared to 83% of the symbiotic isolates. The endogenous accumulation and release of IAA were confirmed immunologically (ELISA) using an anti-IAA antibody on 10 of the Salkowski-positive strains, and the chemical authenticity of IAA was further verified by chemical characterization using gas chromatography-mass spectrometry in Nostoc PCC 9229 (isolated from the angiosperm Gunnera) and in Nostoc 268 (free-living). Addition of the putative IAA precursor tryptophan enhanced IAA accumulation in cell extracts and supernatants. As the genome of the symbiotically competent Nostoc PCC 73102 contains homologues of key enzymes of the indole-3-pyruvic acid pathway, a transaminase and indolepyruvate decarboxylase (IpdC), the putative ipdC gene from this cyanobacterium was cloned and used in Southern blot analysis. Out of 11 cyanobacterial strains responding positively in the Salkowski/ELISA test, ipdC homologues were found in 4. A constitutive and possibly tryptophan-dependent production of IAA via the indole-3-pyruvic acid pathway is therefore suggested. The possible role of IAA in cyanobacteria in general and in their interactions with plants is discussed. 相似文献
16.
《Phytochemistry》1986,25(2):295-298
Polyclonal rabbit antiserum, raised against IAA coupled to bovine serum albumen via the indole nitrogen, was purified on a Protein A column. The immunoglobulin fraction was covalently bound to glutardialdehyde-activated silicate support and used as an immunoaffinity chromatography matrix to purify IAA in extracts from the cambial zone and shoots of Pinus sylvestris. Samples were then analysed by reverse phase HPLC with fluorescence detection. The accuracy of quantitative estimates of IAA, based on isotope dilution analyses, were verified by means of a successive approximation. The presence of IAA in the cambial tissue was further confirmed by GC/MS. 相似文献
17.
Robert S. Bandurski Aga Schulze Jerry D. Cohen 《Biochemical and biophysical research communications》1977,79(4):1219-1223
A light exposure, sufficient to cause a 30% reduction in growth rate of seedlings of Zea mays, causes a decrease of 40% in the concentration of free indole-3-acetic acid in the seedling and an increase in the content of esterified indole-3-acetic acid. We conclude that one mechanism for regulation of plant growth is alteration of the ratio of free to conjugated hormone by environmental stimuli. 相似文献
18.
Victoriano Valpuesta Miguel A. Quesada Cristina Sánchez-Roldán Horacio A. Tigier Antonio Heredia Martin J. Bukovac 《Journal of Plant Growth Regulation》1989,8(4):255-261
Changes in indole-3-acetic acid (IAA) content of peach (Prunus persica L. Batsch cv. Merry) seeds were followed during fruit development. The highest concentration of IAA, 2.7 g/g fresh weight, was found at the beginning of Stage III of fruit development, approximately 50–60 days after anthesis. The IAA-decarboxylating capacity of crude extracts of seeds was also greatest at 55–60 days after anthesis. Four soluble peroxidase isoenzymes were found on anionic electrophoresis. There were no marked changes in two isoenzymes (R
f 0.23 and 0.51), which were present in all three stages of fruit growth. There was a marked increase in a band atR
f 0.59 between Stages II and III, and a decrease in a band atR
f 0.68 from Stages II to III. Neither band (R
f 0.59 and 0.68) was present at Stage I. 相似文献
19.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE
diethylaminoethyl
- GC-MS
gas chromatography-mass spectrometry
- HPLC
high-performance liquid chromatography
- IAA
indole-3-acetic acid
- ICA
indole-3-carboxylic acid
- IEt
indole-3-ethanol
- PVP
polyvinylpyrrolidone 相似文献
20.
Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid 总被引:1,自引:0,他引:1
C L Schauf B Bringle W Stillwell 《Biochemical and biophysical research communications》1987,143(3):1085-1091
This study examines two ways plant hormones might influence membrane processes, effects on overall permeability and modifications of specific ion channels. Abscisic acid (ABA) and indole-3-acetic acid (IAA) greatly enhanced erythritol permeability in mixed egg lecithin bilayers. In single component dioleoylphosphatidylcholine bilayers ABA was less effective than IAA, while 2,4-dichlorophenoxyacetate (2,4-D) did not affect either system or alter their ABA response. In Myxicola axons ABA and IAA had no effect, while 2,4-D (10 uM) caused a depolarizing shift of voltage-dependent Na+ and K+ activation by 25 +/- 4 mV and 15 +/- 3 mV, consistent with internal negative surface charge changes of -0.002 e-/A2 and -0.0007 e-/A2. We conclude that both generalized and ion channel-directed effects may link plant hormones and intracellular regulation. 相似文献