首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.  相似文献   

2.
A Perczel  K Park  G D Fasman 《Proteins》1992,13(1):57-69
A recently developed algorithm, called Convex Constraint Analysis (CCA), was successfully applied to determine the circular dichroism (CD) spectra of the pure beta-pleated sheet in globular proteins. On the basis of X-ray diffraction determined secondary structures, the original data set used (Perczel, A., Hollosi, M., Tusnady, G. Fasman, G.D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Prot. Eng., 4:669-679, 1991), was improved by the addition of proteins with high beta-pleated sheet content. The analysis yielded CD curves of the pure components of the main secondary structural elements (alpha-helix, antiparallel beta-pleated sheet, beta-turns, and unordered conformation), as well as a curve attributed to the "aromatic contribution" in the wavelength range of 195-240 nm. Upon deconvolution the curves obtained were assigned to various secondary structures. The calculated weights (percentages determining the contributions of each pure component curve in the measured CD spectra of a given protein) were correlated with the X-ray diffraction determined percentages in an assignment procedure and were evaluated. The Pearson product correlation coefficients (R) are significant for all five components. The new pure component curves, which were obtained through deconvolution of the protein CD spectra alone, are promising candidates for determining the percentages of the secondary structural components in globular proteins without the necessity of adopting an X-ray database. The CD spectrum of the CheY protein was interesting because it has the characteristic shape associated with the alpha-helical structure, but upon analysis yielded a considerable amount of beta-sheet in agreement with the X-ray structure.  相似文献   

3.
A ridge regression method is presented for prediction of the secondary structure of proteins by the circular dichroism spectra (CD) from 190 to 236 nm. Eight types of the secondary structure were calculated on a microcalculator. The method is based on the X-ray data of Kabsh and Sander. The teaching rule is constructed on CD spectra of 30 proteins of all structural classes of the globular proteins (alpha, alpha/beta, alpha + beta and beta-proteins). The errors of the methods are analysed by removing each protein from the reference set and analyzing its structure in terms of the remaining proteins. Correlation coefficients and root-mean square deviations between CD and X-ray data were: 0.99 and 0.03 for alpha-helix, 0.86 and 0.02 for 3(10)-helix, 0.92 and 0.06 for antiparallel beta-sheet, 0.86 and 0.03 for parallel beta-sheet, 0.94 and 0.01 for T3 beta-turn, 0.85 and 0.02 for other beta-turn, 0.84 and 0.03 for S-bends, 0.83 and 0.04 for "random" structure.  相似文献   

4.
The circular dichroism (CD) spectrum of tumor necrosis factor-α has been measured into the vacuum UV to 168 nm. Analysis of the CD for secondary structure is in good agreement with X-ray diffraction results, but the analysis is somewhat unstable. Adding the CD of this protein together with its X-ray determined secondary structure to the basis set should improve subsequent analyses of CD spectra for other all-β proteins.  相似文献   

5.
The vibrational circular dichroism (VCD) spectra of 20 proteins dissolved in D2O are presented in the amide I' region. These data are decomposed into a linear combination of orthogonal subspectra generated by the principal component method of factor analysis, and the results for 13 of them are compared to their secondary structures as determined from X-ray crystallography. Factor analysis of the VCD yields six statistically significant subspectra that can be used to reproduce the spectra. Their coefficients can then be used to characterize a given protein. Comparison of cluster analyses of these VCD coefficients and of the secondary structure fractional coefficients from X-ray crystallography showed that proteins clustered in the VCD analysis were also clustered in the X-ray analysis. The relative fractions of alpha-helix and beta-sheet in the protein dominate the clustering in both data sets. Qualitative characterization of the secondary structure of a given protein is obtained from its clustering on the basis of spectral characteristics. A strong linear correlation was found between the coefficient of the second subspectrum and the alpha-helical fraction for the proteins studied. The second coefficient also correlated to the beta-sheet fraction, and the first coefficient weakly correlated to the fraction for "other". Subsequent multiple-parameter regression analyses of the VCD factor analysis coefficients, constrained to include only significant dependencies, yielded reliable determination of the alpha-helix fraction and somewhat less confident determination of beta-sheet, bend, and "other" components. Predictive capability for proteins not in the regression was good. Varimax rotation of the coefficients transformed the subspectra and gave simple correlations to secondary structure components but had less reliability and more restrictions than the multiple regression on the original coefficients. The partial least-squares analysis method was also used to predict fractional secondary structures for the training set proteins but resulted in somewhat higher average error, particularly for beta-sheet, than the multiple regression. The turn fraction was effectively undetermined in both the regression and partial least-squares analyses. These statistical analyses represent the first determination of a quantitative relationship between VCD spectra and secondary structure in proteins.  相似文献   

6.
The secondary and tertiary structure of T4 bacteriophage dihydrofolate reductase is investigated by vacuum ultraviolet circular dichroism (CD) spectroscopy and probability analysis of the primary amino acid sequence. The far ultraviolet CD spectrum of the enzyme in the range of 260-178 nm is analyzed by the generalized inverse and variable selection methods developed by our laboratory. Variable selection yields an average content of 26% alpha-helix, 21% antiparallel beta-sheet, 10% parallel beta-sheet, 20% beta-turns, and 32% "other" structures within the T4 protein. The characteristic peaks of the CD spectrum indicate that the enzyme has a lot of antiparallel beta-sheet, which is typical of the alpha + beta tertiary class of globular proteins. The secondary structure of the protein is also analyzed by using four statistical methods on the amino acid sequence. Although the secondary structures predicted by each individual statistical method vary to a considerable extent, the fractions of each structure jointly predicted by a majority of the methods are in excellent agreement with our CD analysis. The alternating arrangement for some segments of alpha-helix and beta-sheet predicted from primary structure to be within the enzyme is characteristic of proteins containing parallel beta-sheet. This supports our conclusion that the protein contains both parallel and antiparallel beta-sheet structures, but finding both types of beta-sheet also means that the protein may have the variation on alpha/beta tertiary structure recently found in EcoRI endonuclease and thymidylate synthase. These observations, in conjunction with other physical properties of the T4 reductase, suggest that the enzyme perhaps shares an evolution in common with the dihydrofolate reductases derived from type I R-plasmids rather than with the host-cell protein.  相似文献   

7.
B A Clack  D M Gray 《Biopolymers》1989,28(11):1861-1873
The CD spectra of four filamentous bacteriophages--fd, IKe, Pf1, and Pf3--were analyzed to determine the alpha-helix contents of their major coat proteins. Measured spectra included the 192-nm band so that analyses could be carried out over the full wavelength range of the reference spectra for protein secondary structures available (a) from globular proteins [J.T. Yang, C.S.C. Wu, and H.M. Martinez (1986) Methods in Enzymology 130, 208-269] and (b) from poly(L-lysine) [N. Greenfield and G.D. Fasman (1960) Biochemistry 8, 4108-4116]. Extended analyses were also performed with the addition of the spectrum of a model beta-turn to the Greenfield and Fasman reference set, with the spectrum of a short alpha-helix in the Yang et al. reference set, and with an estimate of the spectrum of Trp added to both reference sets. The reference set based on the simple poly(L-lysine) polypeptide, plus a spectrum of a model beta-turn or of Trp, gave reasonably good fits to the measured spectra for all four phages and yielded the largest percentages of alpha-helix. The class I phages--fd and IKe--had large percentages of alpha-helix of 98 +/- 2 and 97 +/- 5%, respectively, while the two class II phages--Pf1 and Pf3--had similar but smaller alpha-helix contents of 83 +/- 6 and 84 +/- 2, respectively. While these alpha-helix contents were within the ranges previously reported from CD spectra of these phages in solution, they were more precise, and they indicated that the coat proteins of the intact phages have CD spectra that are probably modeled better by the reference spectra of polypeptides than by those of globular proteins.  相似文献   

8.
Heat shock proteins are rapidly synthesized when cells are exposed to stressful agents that cause protein damage. The 70-kDa heat shock induced proteins and their closely related constitutively expressed cognate proteins bind to unfolded and aberrant polypeptides and to hydrophilic peptides. The structural features of the 70-kDa heat shock proteins that confer the ability to associate with diverse polypeptides are unknown. In this study, we have used circular dichroism (CD) spectroscopy and secondary structure prediction to analyze the secondary structure of the mammalian 70-kDa heat shock cognate protein (hsc 70). The far-ultraviolet CD spectrum of hsc 70 indicates a large fraction of alpha-helix in the protein and resembles the spectra one obtains from proteins of the alpha/beta structural class. Analysis of the CD spectra with deconvolution methods yielded estimates of secondary structure content. The results indicate about 40% alpha-helix and 20% aperiodic structure within hsc 70 and between 16-41% beta-sheet and 21-0% beta-turn. The Garnier-Osguthorpe-Robson method of secondary structure prediction was applied to the rat hsc 70 amino acid sequence. The predicted estimates of alpha-helix and aperiodic structure closely matched the values derived from the CD analysis, whereas the predicted estimates of beta-sheet and beta-turn were midway between the CD-derived values. Present evidence suggests that the polypeptide ligand binding domain of the 70-kDa heat shock protein resides within the C-terminal 160 amino acids [Milarski, K. L., & Morimoto, R. I. (1989) J. Cell Biol. 109, 1947-1962].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Due to the time scale of circular dichroism (CD) measurements, it is theoretically possible to deconvolute such a spectrum if the pure CD spectra differ significantly from one another. In the last decade several methods have been published aiming at obtaining the conformational weights, or percentages (which are the coefficients for a linear combination) of the so-called typical secondary structural elements making up the three-dimensional structure of proteins. Two methods that can be used to determine the secondary structures of proteins are described here. The first method, called LINCOMB, is a simple algorithm based on a least-squares fit with a set of reference spectra representing the known secondary structures and yielding an estimation of weights attributed to alpha-helix, beta-pleated sheet (mainly antiparallel), beta-turns, unordered form, and aromatic/disulfide (or nonpeptide) contributions of the protein being analyzed. This method requires a "template" or reference curve set, which was obtained from the second method. The second method, "convex constraint analysis," is a general deconvolution method for a CD spectra set of any variety of conformational type. The algorithm, based on a set of three constraints, is able to deconvolute a set of CD curves to its common "pure"-component curves and conformational weights. To analyze a single CD spectrum with this method, the spectrum is appended to the data set used as a reference data set. As a way to determine the reliability of the algorithm and provide a guideline to its usage, some applications are presented.  相似文献   

10.
A new method for estimating protein secondary structure from the laser Raman spectrum has been developed whereby the amide I Raman band of a protein is analyzed directly as a linear combination of amide I bands of proteins whose secondary structures are known. For 14 proteins, analyzed by removing each one from the reference set and analyzing its structure in terms of the remaining proteins, the average correlation coefficients between the Raman and X-ray diffraction estimates of helix, beta-strand, turn, and undefined were 0.98, 0.98, 0.82 and 0.35, respectively. Significant correlations were also observed for distinctions between alpha-helix (0.98) and disordered helix (0.82), and between parallel (0.82) and antiparallel (0.97) beta-sheets. The average standard deviation of these Raman estimates from the X-ray values is less than 4%. In addition, a singular value analysis of 20 Raman amide I spectra indicates that there may be as many as nine significant independent pieces of information present in the amide I region.  相似文献   

11.
A new procedure based on the statistical method of "variable selection" is used to predict the secondary structure of proteins from circular dichroism spectra. Variable selection adds the flexibility found in the Provencher and Gl?ckner method (S. W. Provencher and J. Gl?ckner, 1981, Biochemistry 20, 33-37) to the method of Hennessey and Johnson (J. P. Hennessey and W. C. Johnson, 1981, Biochemistry 20, 1085-1094). Two analytical methods are presented for choosing a solution from the series generated by the Provencher and Gl?ckner method, and this improves the technique. All three methods are compared and it is shown that both the variable selection method and the improved Provencher and Gl?ckner methods have equivalent reliability superior to the original Hennessey and Johnson method. For the new variable selection method, correlation coefficients calculated between X-ray structure and predicted secondary structures for data measured to 178 nm are: 0.97 for alpha-helix, 0.75 for beta-sheet, 0.50 for beta-turn, and 0.89 for other structures. Although the variable selection method improves the analysis of circular dichroism data truncated at 190 nm, data measured to 178 nm gives superior results. It is shown that improving the fit to the measured CD beyond the accuracy of the data can result in poorer analyses.  相似文献   

12.
The conformational changes in well-characterized model proteins [bovine ribonuclease A (RNase A), horseradish peroxidase, sperm-whole myoglobin, human hemoglobin, and bovine serum albumin (BSA)] upon adsorption on ultrafine polystyrene (PS) particles have been studied using circular dichroism (CD) spectroscopy. These proteins were chosen with special attention to molecular flexibility. The ultrafine PS particles were negatively charged and have average diameters of 20 or 30 nm. Utilization of these ultrafine PS particles makes it possible to apply the CD technique to determine the secondary structure of proteins adsorbed on the PS surface. Effects of protein properties and adsorption conditions on the extent of the changes in the secondary structure of protein molecules upon adsorption on ultrafine PS particles were studied. The CD spectrum changes upon adsorption were significant in the "soft" protein molecules (myoglobin, hemoglobin, and BSA), while they were insingnificant in the "rigid" proteins (RNase A and peroxidase). The soft proteins sustained a marked decrease in alpha-helix content upon adsorption. Moreover, the native alpha-helix content, which is given as the percentage of the alpha-helix content in the free proteins, of adsorbed BSA was found to decrease with decreasing pH and increase with increasing adsorbed amount. These observations confirm some well-known hypotheses for the confirmational chages in protein molecules upon adsorption. (c) 1992 John Wiley & Sons, Inc.  相似文献   

13.
The most common evidence for the existence of secondary structure in a globular protein is the presence of a strongly pronounced far-UV circular dichroism (CD) spectrum. Although CD spectra of native proteins are well described and their quantitative analysis is widely used, similar studies for denatured proteins have still to be done. Far-UV CD spectra of nine proteins in the native and the pH-induced molten globule states were acquired and analyzed. Singular value decomposition showed that the spectra of molten globules could be described as a superposition of at least three independent components (most likely alpha-, beta- and irregular structure). A self-consistent procedure of CD spectra analysis revealed the existence of a clear correlation between the shape of the molten globule spectra and the content of secondary structure elements in the corresponding native proteins, as determined from X-ray data. A mathematical expression of this correlation in terms of the Pierson coefficient amounts to the value of 0.9 for both the alpha-helix and the beta-structure. Thus, the secondary structure of proteins in the molten globule state is close to that in the native state.  相似文献   

14.
A method is presented for determining the secondary structural composition of a protein in aqueous solution from its infrared spectrum. A factor analysis approach is used to analyze the infrared spectra of 18 proteins whose crystal structures are known from X-ray studies. Factor analysis followed by multiple linear regression identifies those eigenspectra that correlate with the variation in properties described by the calibration set. The properties of interest in this study are % alpha-helix, % beta-sheet, and % turns. In the analysis of an unknown, the factor loadings required to reproduce its spectrum are substituted in the regression equation for each property to predict its secondary structural composition. The accuracy of the method was determined by removing each standard, in turn, from the calibration set and using a calibration set generated from the remainder to predict its composition. By this method we obtain standard errors of prediction of 3.9% for alpha-helix, 8.3% for beta-sheet, and 6.6% for turns. The method may also be applied to the spectra of proteins in 2H2O. The method has important advantages over those currently in use for the quantitative analysis of the infrared spectra of proteins. Manipulation of the spectrum is kept to a minimum, no curve-fitting is necessary, and the several amide I band components need not be assigned.  相似文献   

15.
Pancreatic spasmolytic polypeptide (PSP) isolated from porcine pancreas has been crystallized by the hanging drop vapor diffusion method. Crystals suitable for X-ray diffraction analysis were grown at pH 4.7 from a solution of 6% saturated ammonium sulfate. The space group is orthorhombic I222 or I2(1)2(1)2(1) with unit cell parameters a = 54.38 A, b = 72.29 A, and c = 180.85 A. There are three molecules of PSP per asymmetric unit and a water content of 46.9%. The crystals diffracts to an estimated resolution of 2.7 A. The far-UV CD spectrum of PSP shows some exceptional features which cannot be accounted for thoroughly in terms of standard secondary structures commonly seen in protein CD spectroscopy. With this limitation, the secondary structure analysis predicts 15% alpha-helix, between 10 and 20% antiparallel beta-strand, 10% parallel beta-strand, 15% turn, and 25 to 40% of other structures.  相似文献   

16.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.  相似文献   

17.
Vibrational circular dichroism (VCD) studies are reported for two unrelated recombinant growth factor proteins: epidermal growth factor and basic fibroblast growth factor (bFGF). NMR, electronic CD, and bFGF X-ray studies indicate that these two proteins are primarily composed of beta-sheet and loop secondary structure elements with no detectable alpha-helices. Two reports on solution conformation of these proteins using FTIR absorption spectroscopy with subsequent resolution enhancement confirmed the presence of a large fraction of a beta-sheet conformation but in addition indicated the presence of large absorption bands in the 1650-1656 cm-1 region, which are typically assigned to alpha-helices. The VCD spectra of both proteins have band shapes that strongly resemble those of other high beta-sheet fraction proteins, such as the trypsin family of proteins. Quantitative analysis of the VCD spectra also indicates that these proteins are predominantly in beta-sheet and extended ("other") conformations with very little alpha-helix fraction. These results agree with the CD interpretation and affirm that the FTIR peaks in the region 1650-1656 cm-1 can be assigned to loops. This study provides an example of the limitations of using FTIR frequencies alone for examination of protein secondary structure.  相似文献   

18.
Selected regions of infarred (ir) and circular dichroism (CD) spectral data from 10 proteins were combined and analyzed by a factor analysis method. The regions consisted of the area normalized amide I region from 1700 to 1600 cm-1 for the ir spectra and from 178 to 240 nm for the CD spectra. Each CD spectrum was scaled by a factor of 0.5 before appending the data to the ir spectral data. The scaling factor was deemed necessary to account for relative intensity differences between the ir and CD data and provided nearly optimum agreement between secondary structure estimated by the combined approach to secondary structure determined by X-ray crystallography. The ir/CD combined approach to estimation of helix, beta-sheet, beta-turn, and other or undefined secondary structure agreed with X-ray crystallographic determined structure better than estimation using data from either method alone. Correlation coefficients between X-ray and ir/CD combined secondary structure determinations were 0.99 for helix, 0.90 for beta-sheet, 0.70 for beta-turn, and 0.78 for other structure. The four most significant eigenvectors or basis spectra from eigenanalysis of the ir/CD data are presented as well as generalized inverse spectra for four secondary structures.  相似文献   

19.
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of 16 globular proteins (insulin, lactate dehydrogenase, glucose isomerase, lipase, conalbumin, transferrin, catalase, subtilisin A, alpha-amylase, staphylococcal nuclease, papain, thioredoxin, carbonic anhydrase, elastase, avidin, and xylanase) were successfully measured in aqueous solutions at 25 degrees C from 260 to 160 nm under a high vacuum using a synchrotron-radiation VUVCD spectrophotometer. These proteins exhibited characteristic CD spectra below 190 nm that were related to their different secondary structures, which could not be detected with a conventional CD spectrophotometer. The component spectra of alpha-helices, beta-strands, turns, and unordered structures were obtained by deconvolution analysis of the VUVCD spectra of 31 reference proteins including the 15 proteins reported in our previous paper [Matsuo, K. et al. (2004) J. Biochem. 135, 405-411]. Prediction of the secondary-structure contents using the SELCON3 program was greatly improved, especially for alpha-helices, by extending the short-wavelength limit of CD spectra to 160 nm and by increasing the number of reference proteins. The numbers of alpha-helix and beta-strand segments, which were calculated from the distorted alpha-helix and beta-strand contents, were close to those obtained on X-ray crystallography. These results demonstrate the usefulness of synchrotron-radiation VUVCD spectroscopy for the secondary structure analysis of proteins.  相似文献   

20.
Circular dichroism studies were carried out in the vacuum ultraviolet region for thymidylate synthase from Lactobacillus casei and its ligand complexes. The CD spectrum was analyzed for secondary structure by our method and the variable selection method, and both gave similar results. Our method predicts 33% alpha-helix, 25% (23% antiparallel and 2% parallel) beta-sheet, 20% turns, and 16% other structure. The secondary structure of this protein was also predicted from the amino acid sequence by four different methods. Though there is a variation in the prediction among these methods, the prediction of 32% alpha-helix and 23% beta-sheet by combining the four methods is in excellent agreement with our CD results. Further, the location of the predicted regions of alpha-helices and beta-strands along the sequence and the CD characteristics strongly suggest that this protein belongs to an alpha + beta structural class. Binding of the inhibitor FdUMP or the cofactor 5,10-methylenetetrahydrofolate did not change the CD spectrum. However, when both ligands were present, there was a significant change in the CD spectrum and the maximum changes occurred when the concentration of FdUMP was 1 mol/mol of enzyme. The addition of FdUMP and cofactor causes, respectively, a 5% and 6% decrease in beta-sheet and beta-turns and about an 8% increase in "other" structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号