首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Large numbers of bats are killed by wind turbines worldwide and minimizing fatalities is critically important to bat conservation and acceptance of wind energy development. We implemented a 2-year study testing the effectiveness of an ultrasonic acoustic deterrent for reducing bat fatalities at a wind energy facility in Pennsylvania. We randomly selected control and treatment turbines that were searched daily in summer and fall 2009 and 2010. Estimates of fatality, corrected for field biases, were compared between treatment and control turbines. In 2009, we estimated 21–51% fewer bats were killed per treatment turbine than per control turbine. In 2010, we determined an approximate 9% inherent difference between treatment and control turbines and when factored into our analysis, variation increased and between 2% more and 64% fewer bats were killed per treatment turbine relative to control turbines. We estimated twice as many hoary bats were killed per control turbine than treatment turbine, and nearly twice as many silver-haired bats in 2009. In 2010, although we estimated nearly twice as many hoary bats and nearly 4 times as many silver-haired bats killed per control turbine than at treatment turbines during the treatment period, these only represented an approximate 20% increase in fatality relative to the pre-treatment period for these species when accounting for inherent differences between turbine sets. Our findings suggest broadband ultrasound broadcasts may reduce bat fatalities by discouraging bats from approaching sound sources. However, effectiveness of ultrasonic deterrents is limited by distance and area ultrasound can be broadcast, in part due to rapid attenuation in humid conditions. We caution that an operational deterrent device is not yet available and further modifications and experimentation are needed. Future efforts must also evaluate cost-effectiveness of deterrents in relation to curtailment strategies to allow a cost-benefit analysis for mitigating bat fatalities.  相似文献   

2.
Studying migratory behavior of bats is challenging. Thus, most information regarding their migratory behavior is anecdotal. Recently, however, fatalities of migratory bats at some wind energy facilities across North America have provided the opportunity and impetus to study bat migration at fine spatial and temporal scales. Using acoustic monitoring and carcass searches, we examined temporal and spatial variation in activity levels and fatality rates of bats at a wind energy facility in southern Alberta, Canada. Our goals were to better understand the influence of weather variables and turbine location on the activity and fatality of hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), and to use that understanding to predict variation in fatality rates at wind energy facilities and recommend measures to reduce fatalities. Overall activity of migratory bats and of silver-haired bats increased in low wind speeds and warm ambient temperatures, and was reduced when the wind was from the North or Northeast, whereas hoary bat activity increased with falling barometric pressure. Fatalities of migratory bats in general increased with increased activity of migratory bats, increased moon illumination, and falling barometric pressure and were influenced by the interaction between barometric pressure change and activity. Fatalities of silver-haired bats increased with increased activity, moon illumination, and winds from the south-east. Hoary bat fatalities increased with falling barometric pressure. Our results indicate that both the activity and fatality of migratory bats are affected by weather variables, but that species differ in their responses to environmental conditions. Spatially, fatalities were not influenced by the position of turbines within a turbine row, but were influenced by the location of turbines within the facility. Our findings have implications for our understanding of bat migration and efforts to reduce fatalities at wind energy facilities. To maximize the reduction of bat fatalities, operators of wind energy facilities could incorporate migratory bats' response to environmental variables, such as barometric pressure and fraction of moon illuminated, into their existing mitigation strategies. © 2011 The Wildlife Society.  相似文献   

3.
Abstract Wind has become one of the fastest growing sources of renewable energy worldwide, but widespread and often extensive fatalities of bats have increased concern regarding the impacts of wind energy development on bats and other wildlife. We synthesized available information on patterns of bat fatalities from a review of 21 postconstruction fatality studies conducted at 19 facilities in 5 United States regions and one Canadian province. Dominance of migratory, foliage- and tree-roosting lasiurine species (e.g., hoary bat [Lasiurus cinereus]) killed by turbines was consistent among studies. Bat fatalities, although highly variable and periodic, consistently peaked in late summer and fall, coinciding with migration of lasiurines and other species. A notable exception was documented fatalities of pregnant female Brazilian freetailed bats (Tadarida brasiliensis) in May and June at a facility in Oklahoma, USA, and female silver-haired bats (Lasionycteris noctivagans) during spring in Tennessee, USA, and Alberta, Canada. Most studies reported that fatalities were distributed randomly across turbines at a site, although the highest number of fatalities was often found near the end of turbine strings. Two studies conducted simultaneously in the same region documented similar timing of fatalities between sites, which suggests broader patterns of collisions dictated by weather, prey abundance, or other factors. None of the studies found differences in bat fatalities between turbines equipped with lighting required by the Federal Aviation Administration and turbines that were unlit. All studies that addressed relationships between bat fatalities and weather patterns found that most bats were killed on nights with low wind speed (<6 m/sec) and that fatalities increased immediately before and after passage of storm fronts. Weather patterns may be predictors of bat activity and fatality; thus, mitigation efforts that focus on these high-risk periods could reduce bat fatality substantially. We caution that estimates of bat fatality are conditioned by length of study and search interval and that they are biased in relation to how searcher efficiency, scavenger removal, and habitat differences were or were not accounted for. Our review will assist managers, biologists, and decision-makers with understanding unifying and unique patterns of bat fatality, biases, and limitations of existing efforts, and it will aid in designing future research needed to develop mitigation strategies for minimizing or eliminating bat fatality at wind facilities.  相似文献   

4.
Automated curtailment of wind turbines can reduce fatality rates of wildlife but the resulting increased number of curtailments can reduce power generation. Tailoring curtailment criteria for each individual turbine could reduce unnecessary curtailment, yet it is unknown whether the risk to wildlife varies among turbines. We demonstrate turbine-specific variation in the speed, altitude, approach angle and distance metrics associated with entry by eagles into rotor-swept zones. Our results thus illustrate the potential value of turbine-specific curtailment criteria to reduce fatality rates of wildlife at wind energy facilities.  相似文献   

5.
Bird and bat fatalities increase with wind energy expansion and the only effective fatality-reduction measure has been operational curtailment, which has been documented for bats but not for birds. We performed opportune before-after, control-impact (BACI) experiments of curtailment effects on bird and bat fatalities and nocturnal passage rates during fall migration at 2 wind projects, where 1 continued operating and the other shut down from peak migration to the study's end (study 1). We also performed BACI experiments during a 3-year study of curtailment and operational effects on bird fatalities among wind turbines of varying operational status (study 2). In study 1, wind turbine curtailment significantly reduced near-misses and rotor-disrupted flights of bats, and it significantly reduced fatalities of bats but not of birds. In study 2, converting wind turbines from inoperable to operable status did not significantly increase bird fatalities, and bird species of hole or sheltered-ledge nesters or roosters on human-made structures died in substantial numbers at vacant towers. Of bird species represented by fatalities in study 2, 79% were found at inoperable wind turbines. Because the migration season is relatively brief, seasonal curtailment would greatly reduce bat fatalities for a slight loss in annual energy generation, but it might not benefit many bird species. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

6.
Abstract: The ability to accurately predict the potential occurrence of species of management concern is useful for wildlife managers, particularly for those whose management activities involve large areas where sampling is difficult due to logistical or financial constraints. During the summers of 2002 and 2003, we used mist nets to capture bats (Myotis yumanensis, M. californicus, M. evotis, M. thysanodes, Eptesicus fuscus, Lasionycteris noctivagans, Tadarida brasiliensis, Antrozous pallidus, Lasiurus borealis, and Lasiurus cinereus) in Whiskeytown National Recreation Area in north-central California, USA. We used landscape-scale variables, logistic regression, and Akaike's Information Criterion (AICc) to model species distributions and produce spatially discerning predictive occurrence maps. We developed a priori models that we used to determine which landscape-scale variables best discriminated between capture sites and non-capture sites. The odds of capturing a bat were 3.3 greater when total edge increased by 10,000 m, whereas for Yuma myotis (Myotis yumanensis), the odds of predicting presence were 0.2 greater when distance to lakes and ponds decreased by 2,000 m. Elevation was important in predicting the distribution of silver-haired bats (Lasionycteris noctivagans) and big brown bats (Eptesicus fuscus). Increasing elevation by 400 m decreased the odds of capturing a silver-haired bat by 0.1 and a big brown bat by 0.4. Classification accuracy for our models ranged from 80.9% for all bat species combined to 72.3% for Yuma myotis and silver-haired bats. Predictive occurrence models can be valuable to bat conservation efforts because they provide spatial data important for evaluating the effects of management activities on species distributions.  相似文献   

7.
Understanding animal mating systems is an important component of their conservation, yet the precise mating times for many species of bats are unknown. The aim of this study was to better understand the details and timing of reproductive events in species of bats that die most frequently at wind turbines in North America, because such information can help inform conservation strategies. We examined the reproductive anatomy of hoary bats (Lasiurus cinereus), eastern red bats (L. borealis), and silver-haired bats (Lasionycteris noctivagans) found dead beneath industrial-scale wind turbines to learn more about when they mate. We evaluated 103 L. cinereus, 18 L. borealis, and 47 Ln. noctivagans from wind energy facilities in the United States and Canada. Histological analysis revealed that most male L. cinereus and L. borealis, as well as over half the Ln. noctivagans examined had sperm in the caudae epididymides by late August, indicating readiness to mate. Testes regression in male hoary bats coincided with enlargement of seminal vesicles and apparent growth of keratinized spines on the glans penis. Seasonality of these processes also suggests that mating could occur during August in L. cinereus. Spermatozoa were found in the uterus of an adult female hoary bat collected in September, but not in any other females. Ovaries of all females sampled had growing secondary or tertiary follicles, indicating sexual maturity even in first-year females. Lasiurus cinereus, L. borealis, and Ln. noctivagans are the only North American temperate bats in which most first-year young of both sexes are known to sexually mature in their first autumn. Our findings provide the first detailed information published on the seasonal timing of mating readiness in these species most affected by wind turbines.  相似文献   

8.
Bat fatalities at wind energy facilities in North America are predominantly comprised of migratory, tree‐dependent species, but it is unclear why these bats are at higher risk. Factors influencing bat susceptibility to wind turbines might be revealed by temporal patterns in their behaviors around these dynamic landscape structures. In northern temperate zones, fatalities occur mostly from July through October, but whether this reflects seasonally variable behaviors, passage of migrants, or some combination of factors remains unknown. In this study, we examined video imagery spanning one year in the state of Colorado in the United States, to characterize patterns of seasonal and nightly variability in bat behavior at a wind turbine. We detected bats on 177 of 306 nights representing approximately 3,800 hr of video and > 2,000 discrete bat events. We observed bats approaching the turbine throughout the night across all months during which bats were observed. Two distinct seasonal peaks of bat activity occurred in July and September, representing 30% and 42% increases in discrete bat events from the preceding months June and August, respectively. Bats exhibited behaviors around the turbine that increased in both diversity and duration in July and September. The peaks in bat events were reflected in chasing and turbine approach behaviors. Many of the bat events involved multiple approaches to the turbine, including when bats were displaced through the air by moving blades. The seasonal and nightly patterns we observed were consistent with the possibility that wind turbines invoke investigative behaviors in bats in late summer and autumn coincident with migration and that bats may return and fly close to wind turbines even after experiencing potentially disruptive stimuli like moving blades. Our results point to the need for a deeper understanding of the seasonality, drivers, and characteristics of bat movement across spatial scales.  相似文献   

9.
The reasons why bats are coming into contact with wind turbines are not yet well understood. One hypothesis is that bats are attracted to wind turbines and this attraction may be because bats perceive or misperceive the turbines to provide a resource, such as a foraging or roosting site. During post-construction fatality searches at a wind energy facility in the southern Great Plains, U.S., we discovered bat feces near the base of a wind turbine tower, which led us to hypothesize that bats were actively roosting and/or foraging at turbines. Thus over 2 consecutive years, we conducted systematic searches for bat feces on turbines at this site. We collected 72 bat fecal samples from turbines and successfully extracted DNA from 56 samples. All 6 bat species known to be in the area were confirmed and the majority (59%) were identified as Lasiurus borealis; a species that also comprised the majority of the fatalities (60%) recorded at the site. The presence of bat feces provides further evidence that bats were conducting activities in close proximity to wind turbines. Moreover, feces found in areas such as turbine door slats indicated that bats were using turbines as night or foraging roosts, and further provided evidence that bats were active near the turbines. Future research should therefore aim to identify those features of wind turbines that bats perceive or misperceive as a resource, which in turn may lead to new minimization strategies that effectively reduce bat fatalities at wind farms.  相似文献   

10.
This note is based on a literature search and a recent review of bat mortality data from wind farms in Europe (published elsewhere). We suggest that mortality of bats at wind turbines may be linked to high-altitude feeding on migrating insects that accumulate at the turbine towers. Modern wind turbines seem to reach high enough into the airspace to interfere with the migratory movements of insects. The hypothesis is consistent with recent observations of bats at wind turbines. It is supported by the observation that mortality of bats at wind turbines is highly seasonal (August–September) and typically peaks during nights with weather conditions known to trigger large-scale migratory movements of insects (and songbirds). We also discuss other current hypotheses concerning the mortality of bats at wind turbines.  相似文献   

11.
In North America, Mexican free-tailed bats (Tadarida brasiliensis mexicana) consume vast numbers of insects contributing to the economic well-being of society. Mexican free-tailed bats have declined due to historic guano mining, roost destruction, and bioaccumulation of organochlorine pesticides. Long-distance migrations and dense congregations at roosts exacerbate these declines. Wind energy development further threatens bat communities worldwide and presents emerging challenges to bat conservation. Effective mitigation of bat mortality at wind energy facilities requires baseline data on the biology of affected populations. We collected data on age, sex, and reproductive condition of Mexican free-tailed bats at a cave roost in eastern Nevada located 6 km from a 152-MW industrial wind energy facility. Over 5 years, we captured 46,353 Mexican free-tailed bats. Although just over half of the caught individuals were nonreproductive adult males (53.6%), 826 pregnant, 892 lactating, 10,101 post-lactating, and 4327 nonreproductive adult females were captured. Juveniles comprised 11.5% of captures. Female reproductive phenology was delayed relative to conspecific roosts at lower latitudes, likely due to cooler temperatures. Roost use by reproductive females and juvenile bats demonstrates this site is a maternity roost, with significant ecological and conservation value. To our knowledge, no other industrial scale wind energy facilities exist in such proximity to a heavily used bat roost in North America. Given the susceptibility of Mexican free-tailed bats to wind turbine mortality and the proximity of this roost to a wind energy facility, these data provide a foundation from which differential impacts on demographic groups can be assessed.  相似文献   

12.
The migratory tree-roosting hoary bat (Lasiurus cinereus) and silver-haired bat (Lasionycteris noctivagans) are among the bat species with the highest reported prevalence of rabies in North America. However, bats submitted for rabies testing typically have been those that have come in contact with humans or pets. Given the roosting ecology of L. cinereus and L. noctivagans, contact with healthy individuals of these species is expected to be rare, with a bias in contact and submission of infected individuals and thus an overestimation of rabies prevalence. We tested 121 L. cinereus and 96 L. noctivagans specimens, collected during mortality surveys at wind energy facilities in Southern Alberta, Canada in 2007 and 2008, for rabies. None of the L. cinereus (0%) and one L. noctivagans (1%) tested positive for rabies. Prevalence of rabies was significantly lower than previously reported estimates, passive and active, for L. cinereus and L. noctivagans. In a review of the literature including multiple bat species, we found a significant difference in estimates of rabies prevalence based on passive versus active surveillance testing. Furthermore, roosting ecology influenced estimates of rabies prevalence, with significantly higher prevalence among passive surveillance submissions of nonsynanthropic species compared to synanthropic species, a trend not evident in active surveillance reports. We conclude that rabies prevalence in randomly collected L. cinereus and L. noctivagans is low and comparable to active surveillance estimates from other species (≤ 1%), and that roosting ecology influences estimates of rabies prevalence among bats submitted to public health laboratories in North America.  相似文献   

13.
Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.  相似文献   

14.
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species.  相似文献   

15.
Abstract: Bats are killed by wind turbines in North America and Europe in large numbers, yet a satisfactory explanation for this phenomenon remains elusive. Most bat fatalities at turbines thus far occur during late summer and autumn and involve species that roost in trees. In this commentary I draw on existing literature to illustrate how previous behavioral observations of the affected species might help explain these fatalities. I hypothesize that tree bats collide with turbines while engaging in mating behaviors that center on the tallest trees in a landscape, and that such behaviors stem from 2 different mating systems (resource defense polygyny and lekking). Bats use vision to move across landscapes and might react to the visual stimulus of turbines as they do to tall trees. This scenario has serious conservation and management implications. If mating bats are drawn to turbines, wind energy facilities may act as population sinks and risk may be hard to assess before turbines are built. Researchers could observe bat behavior and experimentally manipulate trees, turbines, or other tall structures to test the hypothesis that tree bats mate at the tallest trees. If this hypothesis is supported, management actions aimed at decreasing the attractiveness of turbines to tree bats may help alleviate the problem. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):845–849; 2008)  相似文献   

16.
Bat fatalities at wind facilities have been reported worldwide, and environmental impact assessments depend on searches for carcasses around wind turbines to quantify impacts. Some of the carcasses may go undetected by search teams or be removed by scavengers during search intervals, so these biases must be evaluated and taken into account in fatality estimation. We investigated the influence of different factors on searcher efficiency and scavenger removal in a dry forest area in northeastern Brazil, one of the regions with the highest density of wind turbines in the Neotropics. We conducted searcher efficiency and scavenger removal trials around 34 wind turbines from January 2017 to January 2018. Searcher efficiency was influenced by cover type, season, and carcass size, ranging between 12% for small bats in shrub vegetation during the rainy season and 96% for large bats in absent or sparse vegetation during the dry season. Carcass type and season affected scavenger removal; carcass persistence time was shorter for chicks (1.2 days) than for bats and mice (2.1 days), and the probability of a carcass persisting for a whole day was higher in the rainy season, while the probability of carcass persistence for 7, 14, and 28 days was higher in the dry season. The scavenger community was composed of canids, birds of prey, and insects, with systematic removal of carcasses by the crab-eating fox (Cerdocyon thous) throughout the year and by dung beetles in the rainy season. Based on our findings, impact assessments of wind facilities on bats should conduct searcher efficiency trials in all seasons and cover types around wind turbines, using bat carcasses or models of different sizes. Scavenger removal trials should cover all seasons as well, and use mouse carcasses (but not chick carcasses) as surrogates for bats.  相似文献   

17.
From 1968 to 1986, Illinois (USA) citizens and agencies submitted 4,272 bats to the Illinois Department of Public Health for rabies testing. Of this number, 6% tested positive, a rate comparable to similar studies from other parts of North America. Due to sampling biases, the true infection rate among bats in Illinois is probably lower than 6%. Additional analysis relied on a subsample (n = 2,433) of the specimens collected from 1965 to 1986. Prevalences were significantly different among years, but no linear trends were found over the study period. Evidence for a local outbreak of bat rabies was found. Prevalences for the species with sample sizes adequate for statistical analysis were, from high to low: hoary bat (Lasiurus cinereus), 11%; red bat (L. borealis), 5%; silver-haired bat (Lasionycteris noctivagans), 4%; little brown bat (Myotis lucifugus), 4%; big brown bat (Eptesicus fuscus), 3%; Keen's bat (Myotis keenii), 2%; and evening bat (Nycticeius humeralis), 2%. The higher prevalences found among the non-colonial species (hoary, red and silver-haired bats) were consistent with similar studies. Considerable annual variation in prevalences was found within species, and the prevalence rankings of the species varied over the study period. Prevalences were significantly higher in females (6%) than in males (4%) when species were pooled, but no significant differences between sexes were found within species. In contrast to the other species analyzed, all of which had sex ratios favoring females, the big brown bat sample had a large majority of males. Prevalences were significantly higher in adults (6%) than in juveniles (3%) when species were pooled. Within individual species, significant differences between age groups were found only for hoary and red bats; in two species, juveniles had higher prevalences. Above average prevalences were observed in May and August to November. Southern Illinois had the highest prevalences; prevalences were intermediate in the north and lowest in the central region. Overall, the patterns of rabies prevalence among bats submitted by the public in Illinois from 1965 to 1986 were similar to those reported from other parts of North America.  相似文献   

18.
Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.  相似文献   

19.
Barotrauma is a significant cause of bat fatalities at wind turbines   总被引:1,自引:0,他引:1  
Bird fatalities at some wind energy facilities around the world have been documented for decades, but the issue of bat fatalities at such facilities — primarily involving migratory species during autumn migration — has been raised relatively recently [1] and [2]. Given that echolocating bats detect moving objects better than stationary ones [3], their relatively high fatality rate is perplexing, and numerous explanations have been proposed [1]. The decompression hypothesis proposes that bats are killed by barotrauma caused by rapid air-pressure reduction near moving turbine blades [1], [4] and [5]. Barotrauma involves tissue damage to air-containing structures caused by rapid or excessive pressure change; pulmonary barotrauma is lung damage due to expansion of air in the lungs that is not accommodated by exhalation. We report here the first evidence that barotrauma is the cause of death in a high proportion of bats found at wind energy facilities. We found that 90% of bat fatalities involved internal haemorrhaging consistent with barotrauma, and that direct contact with turbine blades only accounted for about half of the fatalities. Air pressure change at turbine blades is an undetectable hazard and helps explain high bat fatality rates. We suggest that one reason why there are fewer bird than bat fatalities is that the unique respiratory anatomy of birds is less susceptible to barotrauma than that of mammals.  相似文献   

20.
Bat fatality at wind energy facilities is a conservation issue, but its effect on bat populations is difficult to estimate. We have little understanding of wind turbine effects on bat population persistence, in part because we have poor knowledge of bat migration pathways and hence the source populations for individual fatalities. We used deuterium ratio analysis combined with genetic algorithm for rule-set prediction and the web-based isoscapes modeling, analysis, and prediction in a geographic information system environment as a novel approach. Our objectives were to explore the utility of these methods together and map the geographic extents of eastern red bat (Lasiurus borealis) specimens salvaged in 2008–2010 from a single, 92-km2 wind energy facility in Illinois, USA. Results indicate that combining these methods can be successful and support their use with species where ranges may be less well defined. Because of the migratory nature of this species and the range of deuterium values of pixels in our isotope model, we predicted that 18% and 82% of the specimens would have isotope results inside and outside of the wind facility's isocline respectively. We concluded that 71.4% of the specimens had isotope signatures placing them outside the wind facility's isocline. It could be argued that the wide distribution of bat fatalities dilutes the overall effect of those fatalities on the bat species; however, if other facilities show a similar pattern, each facility could have cumulative and far reaching population-level effects. © 2019 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号