首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Aims: To determine whether Nosema ceranae and Nosema apis are present in different gland tissues of honeybee, Apis mellifera L. and to monitor spore presence and quantity in these glands in naturally infected hives from July 2009 to July 2010 in Quebec, Canada. Methods and Results: Nosema spp. were quantified using duplex quantitative real‐time PCR in the thoracic salivary, hypopharyngeal, mandibular glands, and venom sac and glands of A. mellifera over a period of 8 months. Both Nosema species were present in all the glands as single or mixed species; however, N. apis was not present as single‐species detections in the salivary glands (see Table 2). Nosema ceranae was more prevalent throughout the 8 months. Significant correlative relationships were established for N. ceranae and N. apis levels in the honeybee glands and those found within the intestines of forager honeybees. Overall, the seasonality of N. ceranae and N. apis in the different glands tightly followed the seasonal patterns in the honeybee guts. Conclusions: Nosema ceranae and N. apis are not tissue specific, and honeybee glands have potential to become a useful indicator of the extent of disease in the colony and may represent a potential infection reservoir. Significance and Impact of the Study: First report of spore load quantification of Nosema spp. in different honeybee glands.  相似文献   

2.
Adult workers of Apis cerana, Apis florea and Apis mellifera from colonies heavily infected with Nosema ceranae were selected for molecular analyses of the parasite. PCR-specific 16S rRNA primers were designed, cloned, sequenced and compared to GenBank entries. The sequenced products corresponded to N. ceranae. We then infected A. cerana with N. ceranae spores isolated from A. florea workers. Newly emerged bees from healthy colonies were fed 10,000, 20,000 and 40,000 spores/bee. There were significant dosage dependent differences in bee infection and survival rates. The ratio of infected cells to non-infected cells increased at 6, 10 and 14 d post infection. In addition, hypopharyngeal glands of bees from the control group had significantly higher protein concentrations than infected groups. Bees infected with 40,000 spores/bee had the lowest protein concentrations. Thus, N. ceranae isolated from A. florea is capable of infecting another bee species, impairing hypopharyngeal gland protein production and reducing bee survival in A. cerana.  相似文献   

3.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

4.
The infection of honey bees, Apis mellifera L. (Hymenoptera: Apidae), by the microsporidian Nosema ceranae is one of the factors related to the increase in colony losses and the decrease in honey production observed in recent years. However, these effects seem to differ depending on the climate zone. The range and prevalence of N. ceranae have increased significantly in the last decades, with different consequences in northern and southern temperate areas. The existence of various isolates of N. ceranae from distant geographical areas, which probably exhibit different degrees of virulence, could explain the different responses of the bee to the infection. The aim of this work was to compare the effects of two N. ceranae isolates from different host populations from Argentina on honey bee survival at two ages post-eclosion. Using cage experiments, we compared the development of infection of worker bees through the estimation of daily bee mortality and spore counts. Host subspecies identity analysis showed a strong similarity with Apis mellifera scutellata morphotype for the northern region, with a greater hybridization between subspecies with European origin toward the central and southern regions. Genetic characterization of isolates from the three regions indicated only the presence of N. ceranae. Infected bees survived longer than control bees, and bees infected at 5 days had a lower survival than those infected at 72 h with isolates from the three regions. These differences in survival matched the development of the N. ceranae infection, with differences in spore loads for infected bees at 5 days. Our studies showed that Nosema infection and survival varied among the different ages post emergence of workers, and both increased as the honey bee aged. These differences in susceptibility to infection could be related to the immune response of bees of different ages or to changes in the composition and succession of the intestinal microbiota throughout its ontogeny.  相似文献   

5.
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson''s disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson''s disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin''s opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.  相似文献   

6.
7.
Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21?days post inoculation (21?days?pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host’s whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6?days?pi. At 7?days?pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14?days?pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14?days?pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse.  相似文献   

8.
Nosema ceranae, a microsporidian parasite originally described in the Asian honey bee Apis cerana, has recently been found to be cross-infective and to also parasitize the European honey bee Apis mellifera. Since this discovery, many studies have attempted to characterize the impact of this parasite in A. mellifera honey bees. Nosema species can infect all colony members, workers, drones and queens, but the pathological effects of this microsporidium has been mainly investigated in workers, despite the prime importance of the queen, who monopolizes the reproduction and regulates the cohesion of the society via pheromones. We therefore analyzed the impact of N. ceranae on queen physiology. We found that infection by N. ceranae did not affect the fat body content (an indicator of energy stores) but did alter the vitellogenin titer (an indicator of fertility and longevity), the total antioxidant capacity and the queen mandibular pheromones, which surprisingly were all significantly increased in Nosema-infected queens. Thus, such physiological changes may impact queen health, leading to changes in pheromone production, that could explain Nosema-induced supersedure (queen replacement).  相似文献   

9.
Parasites are dependent on their hosts for energy to reproduce and can exert a significant nutritional stress on them. Energetic demand placed on the host is especially high in cases where the parasite-host complex is less co-evolved. The higher virulence of the newly discovered honeybee pathogen, Nosema ceranae, which causes a higher mortality in its new host Apis mellifera, might be based on a similar mechanism. Using Proboscis Extension Response and feeding experiments, we show that bees infected with N. ceranae have a higher hunger level that leads to a lower survival. Significantly, we also demonstrate that the survival of infected bees fed ad libitum is not different from that of uninfected bees. These results demonstrate that energetic stress is the probable cause of the shortened life span observed in infected bees. We argue that energetic stress can lead to the precocious and risky foraging observed in Nosema infected bees and discuss its relevance to colony collapse syndrome. The significance of energetic stress as a general mechanism by which infectious diseases influence host behavior and physiology is discussed.  相似文献   

10.
11.
Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.  相似文献   

12.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   

13.
Nosema ceranae is now considered to be an emerging infectious disease of the European honey bee Apis mellifera. Only one antibiotic, Fumagillin, is commercially available to combat Nosema infections. This antibiotic treatment is banned from use in Europe and elsewhere there is a high probability for antibiotic resistance to develop. We are therefore interested in investigating the effects of a natural propolis extract on its ability to reduce N. ceranae infection loads in the dwarf honey bee, Apis florea, a native honey bee with a range that overlaps with Apis cerana and Apis mellifera that is at risk of infection. Experimentally infected caged bees were fed a treatment consisting of 0%, 50%, or 70% propolis extract. All 50% and 70% propolis treated bees had significantly lower infection loads, and the 50% treated bees had higher survival in comparison to untreated bees. In addition, propolis treated bees had significantly higher haemolymph trehalose levels and hypopharyngeal gland protein content similar to levels of uninfected bees. Propolis ethanolic extract treatment could therefore be considered as a possible viable alternative to Fumagillin to improve bee health. This natural treatment deserves further exploration to develop it as a possible alternative to combat N. ceranae infections distributed around the world.  相似文献   

14.
The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera.  相似文献   

15.
Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.  相似文献   

16.
The trypanosome Lotmaria passim and the microsporidian Nosema ceranae are common parasites of the honey bee, Apis mellifera, intestine, but the nature of interactions between them is unknown. Here, we took advantage of naturally occurring infections and quantified infection loads of individual workers (N = 408) originating from three apiaries (four colonies per apiary) using PCR to test for interactions between these two parasites. For that purpose, we measured the frequency of single and double infections, estimated the parasite loads of single and double infections, and determined the type of correlation between both parasites in double infections. If interactions between both parasites are strong and antagonistic, single infections should be more frequent than double infections, double infections will have lower parasite loads than single infections, and double infections will present a negative correlation. Overall, a total of 88 workers were infected with N. ceranae, 53 with L. passim, and eight with both parasites. Although both parasites were found in all three apiaries, there were significant differences among apiaries in the proportions of infected bees. The data show no significant differences between the expected and observed frequencies of single‐ and double‐infected bees. While the infection loads of individual bees were significantly higher for L. passim compared to N. ceranae, there were no significant differences in infection loads between single‐ and double‐infected hosts for both parasites. These results suggest no strong interactions between the two parasites in honey bees, possibly due to spatial separation in the host. The significant positive correlation between L. passim and N. ceranae infection loads in double‐infected hosts therefore most likely results from differences among individual hosts rather than cooperation between parasites. Even if hosts are infected by multiple parasites, this does not necessarily imply that there are any significant interactions between them.  相似文献   

17.
【目的】本研究旨在对前期鉴定到的nce-miR-34537进行表达和序列验证,预测nce-miR-34537的靶基因并明确其分子特性,进而检测nce-miR-34537及其靶基因在东方蜜蜂微孢子虫(Nosema ceranae)侵染意大利蜜蜂(Apis mellifera ligustica)工蜂过程的表达谱,为进一步探究nce-miR-34537调控东方蜜蜂微孢子虫侵染的功能和作用机制提供基础。【方法】通过Stem-loop-RT-PCR和Sanger测序验证nce-miR-34537的表达和序列。通过生物信息学软件预测nce-miR-34537的靶基因PIP5KI(I型磷脂酰肌醇4-磷酸-5-激酶基因)的理化性质等分子特性和保守基序,并构建基于氨基酸序列的系统进化树。采用RT-qPCR检测nce-miR-34537及其靶基因的表达谱。【结果】nce-miR-34537在东方蜜蜂微孢子虫孢子中真实存在和表达。nce-miR-34537共靶向PIP5KI等151个基因。PIP5KI蛋白的分子式为C882H1 364N226  相似文献   

18.
Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.  相似文献   

19.
Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries.  相似文献   

20.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including >90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database, which we anticipate will become a valuable resource for the IMS community.Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS)1 is an emerging technique that can be described as a multi-color molecular microscope as it allows visualizing the distribution of many molecules as mass to charge (m/z) signals in parallel in situ (1). Originally described some 15 years ago (2) the method has been successfully adapted to different analyte classes including small molecule drugs (3), metabolites (4), lipids (5), proteins (6), and peptides (7) using e.g. formalin fixed paraffin embedded (FFPE) as well as fresh frozen tissue (8). Because the tissue stays intact in the process, MALDI IMS is compatible with histochemistry (9) as well as immunohistochemistry and thus adds an additional dimension of molecular information to classical microscopy based tissue analysis (10). Imaging of proteins is appealing as it conceptually allows determining the localization and abundance of proteoforms (11) that naturally occur in the tissue under investigation including modifications such as phosphorylation, acetylation, or ubiquitination, protease mediated cleavage or truncation (12). Therefore a proteinous m/z species detected by MALDI IMS can be viewed as an in situ molecular probe of a particular biological process. In turn, m/z abundance patterns that discriminate different physiological or pathological conditions might be used as diagnostic or even prognostic markers (13, 14). In recent years, MALDI IMS of proteins has been successfully applied to different cancer types from the brain (15), breast (16, 17), kidney (18), prostate (19), and skin (20). Furthermore, the technique has been applied in the context of colon inflammation (21), embryonic development (22), Alzheimer''s disease (23), and amyotrophic lateral sclerosis (24). With a few notable exceptions (13, 14, 1618, 20, 2430), the identity of the proteins constituting the observed characteristic m/z patters has generally remained elusive. This not only precludes the validation of the putative biomarkers by, for example, immunohistochemistry, but also the elucidation of the biological processes that might underlie the observed phenotype.Here, we introduce a straightforward extraction and identification method for proteins embedded in the MALDI matrix layer that represent the molecular species amenable to MALDI IMS. Using a bottom-up proteomics approach including tryptic digestion and liquid chromatography tandem mass spectrometry (LC-MS/MS), we first created an inventory list of proteins derived from this layer, which we term the MALDI matrix proteome. Although the bottom-up approach breaks the link between the identified proteins and the m/z species detected in MALDI IMS, the list of identified proteins serves as the pool of proteins from which all potential biomarkers are most likely derived. Indeed we detected >90% of all human MALDI IMS biomarkers reported in the literature by analyzing just ten human tissues. In addition, the results demonstrate that the same inventory can be used as a focused database for direct top-down sequencing and identification of proteins extracted from the MALDI matrix layer. The proposed method is generic and can be applied to any MALDI IMS study, which is why we believe that one of the major challenges in identifying MALDI IMS biomarkers has now been overcome. In addition, we provide a list of all proteins and peptides identified in the MALDI matrices and tissues studied here as well as a comprehensive list of m/z species identified in the literature dealing with MALDI imaging of humans and rodents. This information has been compiled in MaTisse (http://www.wzw.tum.de/bioanalytik/matisse), a new publically available and searchable database, which we believe will become a valuable tool for the MALDI imaging community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号