首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: With the decline of many lekking species, the need to develop a rigorous population estimation technique is critical for successful conservation and management. We employed mark—resight methods to estimate population size for 2 lekking species: greater sage-grouse (Centrocercus urophasianus) and Gunnison sage-grouse (Centrocercus minimus). We evaluated 2 different estimators: Bowden's estimator and the mixed logit-normal mark—resight model. We captured and marked 75 greater sage-grouse. We counted marked and unmarked birds as they attended 15 known leks. We used 36 and 37 marked Gunnison sage-grouse to estimate population size in 2003 and 2004, respectively. We observed marked and unmarked Gunnison sage-grouse daily as they attended 6 leks in 2003 and 3 leks in 2004. Based on our examination of the assumptions of each mark—resight estimator, relative to behavior and biology of these species, we concluded the mixed logit-normal mark—resight model is preferred. We recommend wildlife managers employ mark—resight approaches when statistically rigorous population estimates are required for management and conservation of lekking species.  相似文献   

2.
Long-term population monitoring is the cornerstone of animal conservation and management. The accuracy and precision of models developed using monitoring data can be influenced by the protocols guiding data collection. The greater sage-grouse (Centrocercus urophasianus) is a species of concern that has been monitored over decades, primarily, by counting the number of males that attend lek (breeding) sites. These lek count data have been used to assess long-term population trends and for multiple mechanistic studies. However, some studies have questioned the efficacy of lek counts to accurately identify population trends. In response, monitoring protocols were changed to have a goal of counting lek sites multiple times within a season. We assessed the influence of this change in monitoring protocols on model accuracy and precision applying generalized additive models to describe trends over time. We found that at large spatial scales including >50 leks, the absence of repeated counts within a year did not significantly alter population trend estimates or interpretation. Increasing sample size decreased the model confidence intervals. We developed a population trend model for Wyoming greater sage-grouse from 1965 to 2008, identifying significant changes in the population indices and capturing the cyclic nature of this species. Most sage-grouse declines in Wyoming occurred between 1965 and the 1990s and lek count numbers generally increased from the mid-1990s to 2008. Our results validate the combination of monitoring data collected under different protocols in past and future studies—provided those studies are addressing large-scale questions. We suggest that a larger sample of individual leks is preferable to multiple counts of a smaller sample of leks. © 2011 The Wildlife Society.  相似文献   

3.
ABSTRACT We used band-recovery data from 2 populations of greater sage-grouse (Centrocercus urophasianus), one in Colorado, USA, and another in Nevada, USA, to examine the relationship between harvest rates and annual survival. We used a Seber parameterization to estimate parameters for both populations. We estimated the process correlation between reporting rate and annual survival using Markov chain Monte Carlo methods implemented in Program MARK. If hunting mortality is additive to other mortality factors, then the process correlation between reporting and survival rates will be negative. Annual survival estimates for adult and juvenile greater sage-grouse in Nevada were 0.42±0.07 (±SE) for both age classes, whereas estimates of reporting rate were 0.15±0.02 and 0.16±0.03 for the 2 age classes, respectively. For Colorado, average reporting rates were 0.14±0.016, 0.14±0.010, 0.19±0.014, and 0.18±0.014 for adult females, adult males, juvenile females, and juvenile males, respectively. Corresponding mean annual survival estimates were 0.59±0.01, 0.37±0.03, 0.78±0.01, and 0.64±0.03. Estimated process correlation between logit-transformed reporting and survival rates for greater sage-grouse in Colorado was ρ = 0.68±0.26, whereas that for Nevada was ρ = 0.04±0.58. We found no support for an additive effect of harvest on survival in either population, although the Nevada study likely had low power. This finding will assist mangers in establishing harvest regulations and otherwise managing greater sage-grouse populations.  相似文献   

4.
Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AICc) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of future land-use scenarios. © 2011 The Wildlife Society.  相似文献   

5.
Counts of males displaying on breeding grounds are the primary management tool used to assess population trends in lekking grouse species. Despite the importance of male lek attendance (i.e., proportion of males on leks available for detection) influencing lek counts, patterns of within season and between season variability in attendance rates are not well understood. We used high-frequency global positioning system (GPS) telemetry data from male greater sage-grouse (Centrocercus urophasianus; n = 67) over five lekking seasons (2013–2017) at eight study sites in Nevada to estimate lek attendance rates. Specifically, we recorded daily locations of sage-grouse in relation to mapped lek boundaries and used generalized additive models to assess temporal variation in attendance rates by age class (subadult vs. adult). Average timing of peak attendance occurred on 16 April but varied from March 16, 2014 to April 21 , 2016. Overall, adult males attended leks at higher rates (0.683 at peak) and earlier in the season (19 March) than subadults (0.421 at peak on April 19). Peak attendance probability was positively related to cumulative winter precipitation. Daily probabilities of lek switching differed between adults (0.019 at peak on March 3) and subadults (0.046 at peak on March 22), and lek switching was negatively related to distance to nearest lek. Our results indicate variable patterns in lek attendance through time, and that lek switching may occur at higher rates than previously thought. We demonstrate the use of generalizable daily attendance curves to date-correct lek counts and derive estimates of male abundance, although such an approach will likely require the incorporation of information on age structure to produce robust results that are useful for population monitoring.  相似文献   

6.
Survival of greater sage-grouse (Centrocercus urophasianus) has been well described in large populations across the species range. Very little published information exists, however, on survival rates of translocated sage-grouse or grouse from a long-term (>10 yr) study. Our objectives were to estimate seasonal and annual survival rates; assess differences in survival between resident and translocated, adult and yearling, and male and female sage-grouse; identify environmental and behavioral factors associated with survival; and assess the influence of mammalian predator control on survival rates of radio-marked sage-grouse in Strawberry Valley, Utah from 1998 to 2010. We used a 2-stage model selection approach using Akaike's Information Criterion corrected for sample size (AICc) with known-fate models in Program MARK to evaluate the influences of seasonal, annual, demographic, and behavioral effects on survival rates of sage-grouse. We captured and fitted 535 individual sage-grouse (male and female, resident and translocated) with radio transmitters over a 13-year period and monitored them weekly. The top model of survival, which accounted for 22% of the AICc weight, included 3 seasons that varied by year where rates were influenced by residency, sex, and whether a female initiated a nest. A group-level covariate for the number of canids killed each year received some support as this variable improved model fit compared to identical models without it, although confidence intervals around β estimates overlapped zero slightly. All other demographic or environmental variables showed little or no support. Annual estimates of survival for females ranged between 28% and 84% depending on year and translocation source. Survival was consistently highest during the fall–winter months with a mean monthly survival rate of 0.97 (95% CI = 0.96–0.98). The lack of a control site and other potential confounding factors limit the extent of our inference with respect to predator control. Nonetheless, we suggest managers consider enhancing nesting habitat, translocating sage-grouse, and possibly controlling predators to improve survival rates of sage-grouse. © The Wildlife Society, 2013  相似文献   

7.
ABSTRACT We estimated survival rates of 135 female greater sage-grouse (Centrocercus urophasianus) on 3 study areas in southeastern Oregon, USA during autumn and winter for 3 years. We used known-fate models in Program MARK to test for differences among study areas and years, investigate the potential influence of weather, and compute estimates of overwinter survival. We found no evidence for differences in survival rates among study areas, which was contrary to our original hypothesis. There also were no declines in survival rates during fall-winter, but survival rates varied among years and time within years. Average survival rate from October through February was 0.456 (SE = 0.062). The coefficient of variation for this estimate was 13.6% indicating good precision in our estimates of survival. We found strong evidence for an effect of weather (i.e., mean daily min. temp, extreme min. temp, snow depth) on bi-weekly survival rates of sage-grouse for 2 of the study areas in one year. Extremely low (<-15°C) temperatures over an 8-week period and accumulation of snow had a negative effect on survival rates during the winter of 1990–1991 on the 2 study areas at the higher (>1,500 m) elevations. In contrast, we found no evidence for an influence of weather on the low-elevation study area or during the winters of 1989–1990 and 1991–1992. Extreme weather during winter can cause lower survival of adult female sage-grouse, so managers should be aware of these potential effects and reduce harvest rates accordingly.  相似文献   

8.
Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.  相似文献   

9.
ABSTRACT Sagebrush (Artemisia spp.)-dominated habitats in the western United States have experienced extensive, rapid changes due to development of natural-gas fields, resulting in localized declines of greater sage-grouse (Centrocercus urophasianus) populations. It is unclear whether population declines in natural-gas fields are caused by avoidance or demographic impacts, or the age classes that are most affected. Land and wildlife management agencies need information on how energy developments affect sage-grouse populations to ensure informed land-use decisions are made, effective mitigation measures are identified, and appropriate monitoring programs are implemented (Sawyer et al. 2006). We used information from radio-equipped greater sage-grouse and lek counts to investigate natural-gas development influences on 1) the distribution of, and 2) the probability of recruiting yearling males and females into breeding populations in the Upper Green River Basin of southwestern Wyoming, USA. Yearling males avoided leks near the infrastructure of natural-gas fields when establishing breeding territories; yearling females avoided nesting within 950 m of the infrastructure of natural-gas fields. Additionally, both yearling males and yearling females reared in areas where infrastructure was present had lower annual survival, and yearling males established breeding territories less often, compared to yearlings reared in areas with no infrastructure. Our results supply mechanisms for population-level declines of sage-grouse documented in natural-gas fields, and suggest to land managers that current stipulations on development may not provide management solutions. Managing landscapes so that suitably sized and located regions remain undeveloped may be an effective strategy to sustain greater sage-grouse populations affected by energy developments.  相似文献   

10.
Previous research in Europe and North America suggested grouse are susceptible to collision with infrastructure, and anecdotal observation suggested greater sage-grouse (Centrocercus urophasianus) fence collision in breeding habitats may be prevalent. However, no previous research systematically studied greater sage-grouse fence collision in any portion of their range. We used data from probability-based sampling of fences in greater sage-grouse breeding habitats of southern Idaho, USA, to model factors associated with collision at microsite and broad spatial scales. Site-scale modeling suggested collision may be influenced by technical attributes of fences, with collisions common at fence segments absent wooden fence posts and with segment widths >4 m. Broad-scale modeling suggested relative probability of collision was influenced by region, a terrain ruggedness index (TRI), and fence density per square km. Conditional on those factors, collision counts were also influenced by distance to nearest active sage-grouse lek. Our models provide a conceptual framework for prioritizing sage-grouse breeding habitats for collision mitigation such as fence marking or moving, and suggest mitigation in breeding habitats should start in areas with moderate-high fence densities (>1 km/km2) within 2 km of active leks. However, TRI attenuated other covariate effects, and mean TRI/km2 >10 m nearly eliminated sage-grouse collision. Thus, our data suggested mitigation should focus on sites with flat to gently rolling terrain. Moreover, site-scale modeling suggested constructing fences with larger and more conspicuous wooden fence posts and segment widths <4 m may reduce collision. © 2012 The Wildlife Society.  相似文献   

11.
1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.  相似文献   

12.
Abstract: Loss of quality brood rearing habitat, resulting in reduced chick growth and poor recruitment, is one mechanism associated with decline of greater sage-grouse (Centrocercus urophasianus) populations. Low chick survival rates are typically attributed to poor-quality brood rearing habitat. Models that delineate suitability of sage-grouse nesting or brood rearing habitat at the landscape scale can provide key insights into the relationship between sage-grouse and the environment, allowing managers to identify and prioritize habitats for protection or restoration. We used Southwest Regional Gap landcover types to identify early and late greater sage-grouse brood rearing in east-central Nevada. We conducted an Ecological Niche Factor Analysis to 1) examine the effect these landcover types and other ecogeographical variables have on sage-grouse selection of brood rearing habitat, and 2) generate landscape-scale suitability maps. We also evaluated if incorporating a fitness component (brood survival) in landscape spatial analyses of habitat quality influenced our assessment of habitat suitability. Because 36% of our 6,500-km2 study area was identified as early brood rearing habitat, we believe this habitat may not be limiting greater sage-grouse populations in east-central Nevada, USA, at least in wet years. We found strong selection for particular landcover types (e.g., higher elevation, moist sites with riparian shrubs or montane sagebrush) during late brood rearing. Late brood rearing habitat on which broods were successfully reared represented only 2.8% of the study area and had a restricted distribution, suggesting the potential that such habitat could limit sage-grouse populations in east-central Nevada.  相似文献   

13.
Despite decades of field research on greater sage-grouse, range-wide demographic data have yet to be synthesized into a sensitivity analysis to guide management actions. We reviewed range-wide demographic rates for greater sage-grouse from 1938 to 2011 and used data from 50 studies to parameterize a 2-stage, female-based population matrix model. We conducted life-stage simulation analyses to determine the proportion of variation in population growth rate (λ) accounted for by each vital rate, and we calculated analytical sensitivity, elasticity, and variance-stabilized sensitivity to identify the contribution of each vital rate to λ. As expected for an upland game bird, greater sage-grouse showed marked annual and geographic variation in several vital rates. Three rates were demonstrably important for population growth: female survival, chick survival, and nest success. Female survival and chick survival, in that order, had the most influence on λ per unit change in vital rates. However, nest success explained more of the variation in λ than did the survival rates. In lieu of quantitative data on specific mortality factors driving local populations, we recommend that management efforts for greater sage-grouse first focus on increasing female survival by restoring large, intact sagebrush-steppe landscapes, reducing persistent sources of human-caused mortality, and eliminating anthropogenic habitat features that subsidize species that prey on juvenile, yearling, and adult females. Our analysis also supports efforts to increase chick survival and nest success by eliminating anthropogenic habitat features that subsidize chick and nest predators, and by managing shrub, forb, and grass cover, height, and composition to meet local brood-rearing and nesting habitat guidelines. We caution that habitat management to increase chick survival and nest success should not reduce the cover or height of sagebrush below that required for female survival in other seasons (e.g., fall, winter). The success or failure of management actions for sage-grouse should be assessed by measuring changes in vital rates over long time periods to avoid confounding with natural, annual variation. © 2011 The Wildlife Society.  相似文献   

14.
The usefulness of protected areas as regulatory mechanisms to conserve wildlife populations relies on their ability to contain all seasonal habitats necessary for species persistence. Efficient conservation practices require understanding behavior and habitat needs of individual species and populations rather than simply relying on reserves of approximate size and configuration. Priority Areas of Conservation (PACs) have been delineated as protected areas based on known breeding habitat for greater sage-grouse (Centrocercus urophasianus; sage-grouse) throughout their range. These PACs include Core Areas designated in the Wyoming Sage-grouse Executive Order; however, this order also indicated the need to identify winter concentration areas (WCAs; flocks ≥50 individuals) based on habitat features using validated resource selection functions (RSFs). We used aerial infrared videography to identify locations of wintering sage-grouse in south-central and southwest Wyoming, USA, to evaluate winter sage-grouse habitat selection with individual-based RSFs, RSFs based on WCAs, and relative flock size. We located 4,859 individuals comprising 132 flocks across our study area. Flocks occurred in Core Areas more than expected, but a biologically meaningful number of sage-grouse flocks were located outside of Core Areas. Individual-based RSFs contained useful predictors that were consistent with previous sage-grouse winter habitat selection studies. Flock size and WCA models produced similar predictions to individual-based RSF models. Individual-based and WCA-based RSF model predictions had a high degree of similarity, suggesting that identifying important winter habitats with individual-based RSF modeling is useful for locating potential WCAs when information on flock sizes is not available. Our results and survey technique provide a potential framework for identifying sage-grouse WCAs with implications for improving PAC protection of all seasonal habitats for sage-grouse conservation. © 2019 The Wildlife Society.  相似文献   

15.
Abstract: Increased raptor and corvid abundance has been documented in landscapes fragmented by man-made structures, such as fence posts and power lines. These vertical structures may enhance raptor and corvid foraging and predation efficiency because of increased availability of perch, nesting, and roosting sites. Concomitantly, vertical structures, in particular power distribution lines, have been identified as a threat to sage-grouse (Centrocercus spp.) conservation. To mitigate potential impacts of power distribution lines on sage-grouse and other avian species, the electrical power industry has retrofitted support poles with perch deterrents to discourage raptor and corvid use. No published information is available regarding efficacy of contemporary perch deterrents on avian predator use of lower-voltage power distribution lines. We evaluated efficacy of 5 perch deterrents mounted on support poles of an 11-km section of a 12.5-kV distribution line that bisected occupied Gunnison sage-grouse (Centrocercus minimus) habitat in southeastern Utah, USA. Perch deterrents were mounted on the line in November–December 2006 following a random replicated block design that included controls. During 168 hours and 84 hours of direct observation in 2007 and 2008, respectively, we recorded 276 and 139 perching events of 7 potential avian predators of sage-grouse. Golden eagles (Aquila chrysaetos) were the dominant species we recorded during both years. We did not detect any difference in perching events by perch deterrent we evaluated and controls (P > 0.05). Perch deterrents we evaluated were not effective because of inherent design and placement flaws. Additionally, previous pole modifications that mitigated avian electrocutions provided alternative perches. We did not record any raptor or corvid electrocutions or direct predation on Gunnison sage-grouse. The conclusions of this study can be applied by conservation groups and power companies to future management of power distribution lines within areas inhabited by species sensitive to man-made vertical structures.  相似文献   

16.
Abstract: Harvest of upland game birds in concert with sampling of age ratios from wings can yield important biological information about populations. Although estimates of productivity are commonly produced, they are often not accompanied by a measure of variance. Thus, we developed standard error estimates for sample productivity ratios, compared 4 methods for creating confidence intervals for population productivity ratios, and developed a test and the corresponding sample size requirements for comparing 2 population productivity ratios. We applied these techniques to greater sage-grouse (Centrocercus urophasianus) wing-data collected in Oregon, USA (1993–2005). Computer simulations indicated that backtransforming the Wilson's score interval on the proportion of immatures in the sample results in the most reliable confidence intervals among the methods considered. We recommend to managers measuring conservation action outcomes with productivity ratios to consider the appropriate sample sizes for the spatial and temporal scale of their monitoring programs.  相似文献   

17.
ABSTRACT We studied nest survival of greater sage-grouse (Centrocercus urophasianus) in 5 subareas of Mono County, California, USA, from 2003 to 2005 to 1) evaluate the importance of key vegetation variables for nest success, and 2) to compare nest success in this population with other greater sage-grouse populations. We captured and radiotracked females (n = 72) to identify nest sites and monitor nest survival. We measured vegetation at nest sites and within a 10-m radius around each nest to evaluate possible vegetation factors influencing nest survival. We estimated daily nest survival and the effect of explanatory variables on daily nest survival using nest-survival models in Program MARK. We assessed effects on daily nest survival of total, sagebrush (Artemisia spp.), and nonsagebrush live shrub-cover, Robel visual obstruction, the mean of grass residual height and grass residual cover measurements within 10 m of the nest shrub, and area of the shrub, shrub height, and shrub type at the nest site itself. Assuming a 38-day exposure period, we estimated nest survival at 43.4%, with percent cover of shrubs other than sagebrush as the variable most related to nest survival. Nest survival increased with increasing cover of shrubs other than sagebrush. Also, daily nest survival decreased with nest age, and there was considerable variation in nest survival among the 5 subareas. Our results indicate that greater shrub cover and a diversity of shrub species within sagebrush habitats may be more important to sage-grouse nest success in Mono County than has been reported elsewhere.  相似文献   

18.
In recent decades, feral horse (Equus caballus; horse) populations increased in sagebrush (Artimesia spp.) ecosystems, especially within the Great Basin, to the point of exceeding maximum appropriate management levels (AMLmax), which were set by land administrators to balance resource use by feral horses, livestock, and wildlife. Concomitantly, greater sage-grouse (Centrocercus urophasianus; sage-grouse) are sagebrush obligates that have experienced population declines within these same arid environments as a result of steady and continued loss of seasonal habitats. Although a strong body of research indicates that overabundant populations of horses degrade sagebrush ecosystems, empirical evidence linking horse abundance to sage-grouse population dynamics is missing. Within a Bayesian framework, we employed state-space models to estimate population rate of change (λ) using 15 years (2005–2019) of count surveys of male sage-grouse at traditional breeding grounds (i.e., leks) as a function of horse abundance relative to AMLmax and other environmental covariates (e.g., wildfire, precipitation, % sagebrush cover). Additionally, we employed a post hoc impact-control design to validate existing AMLmax values as related to sage-grouse population responses, and to help control for environmental stochasticity and broad-scale oscillations in sage-grouse abundance. On average, for every 50% increase in horse abundance over AMLmax, our model predicted an annual decline in sage-grouse abundance by 2.6%. Horse abundance at or below AMLmax coincided with sage-grouse λ estimates that were consistent with trends at non-horse areas elsewhere in the study region. Thus, AMLmax, as a whole, appeared to be set adequately in preventing adverse effects to sage-grouse populations. Results indicated 76%, 97%, and >99% probability of sage-grouse population decline relative to controls when horse numbers are 2, 2.5, and ≥3 times over AMLmax, respectively. As of 2019, horse herds exceeded AMLmax in Nevada, USA, by >4 times on average across all horse management areas. If feral horse populations continue to grow at current rates unabated, model projections indicate sage-grouse populations will be reduced within horse-occupied areas by >70.0% by 2034 (15-year projection), on average compared to 21.2% estimated for control sites. A monitoring framework that improves on estimating horse abundance and identifying responses of sage-grouse and other key indicator species (plant and animal) would be beneficial to guide management decisions that promote co-occurrence of horses with sensitive wildlife and livestock within landscapes subjected to multiple uses. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

19.
Populations of feral horses (Equus ferus caballus) in the western United States have increased during the past decade, consequently affecting co-occurring wildlife habitat. Feral horses may influence 2 native wildlife species, greater sage-grouse (Centrocercus urophasianus; sage-grouse) and pronghorn (Antilocapra americana) through mechanisms of habitat alteration and competition. Wyoming, USA, contains the largest populations of pronghorn and sage-grouse of any state and also has the highest degree of range overlap between feral horses and these species. Consequently, the effects that horses may have on pronghorn and sage-grouse populations in Wyoming have implications at local, state, and population-wide levels. Managers need information concerning habitat selection and space use overlap among these species to develop appropriate management strategies; yet this information is absent for most feral horse management areas. To address this knowledge need, we attached global positioning system (GPS) transmitters to horses, pronghorn, and sage-grouse within the greater Bureau of Land Management–Adobe Town Herd Management Area in southern Wyoming and northern Colorado, USA, between 2017 and 2021 to evaluate habitat selection and space use of all species during 3 biologically relevant seasons: spring (Apr–Jun; sage-grouse breeding, nesting, and early-brood rearing; pronghorn late gestation and early parturition), summer (Jul–Oct; sage-grouse summer and late-brood rearing; pronghorn late parturition and breeding), and winter (Nov–Mar; non-breeding season). Feral horses selected flatter slopes and shorter mean shrub height across all seasons and were closer to water in spring and summer. Pronghorn habitat selection was similar to horses, but they also avoided oil and gas well pads year-round. During spring, sage-grouse selected greater herbaceous cover, flatter slopes, and areas farther from well pads. In summer, sage-grouse selected greater mean shrub height, flatter slopes, and were closer to water. In winter, sage-grouse selected flatter slopes and areas with greater vegetation production during the preceding summer. Our results indicate strong year-round overlap in space use between horses and pronghorn, whereas overlap between horses and sage-grouse is greatest during the summer in this region. Consequently, managers should recognize the potential for horses to influence habitat quality of pronghorn and sage-grouse in the region.  相似文献   

20.
Abstract Translocations of greater sage-grouse (Centrocercus urophasianus) have been attempted in 7 states and one Canadian province with very little success. To recover a small remnant population and test the efficacy of sage-grouse translocations, we captured and transported 137 adult female sage-grouse from 2 source populations to a release site in Strawberry Valley, Utah, USA, during March-April 2003–2005. The resident population of sage-grouse in Strawberry Valley was approximately 150 breeding birds prior to the release. We radiomarked each female and documented survival, movements, reproductive effort, flocking with resident grouse, and lek attendance. We used Program MARK to calculate annual survival of translocated females in the first year after release, which averaged 0.60 (95% CI = 0.515-0.681). Movements of translocated females were within current and historic sage-grouse habitat in Strawberry Valley, and we detected no grouse outside of the study area. Nesting propensity for first (newly translocated) and second (surviving) year females was 39% and 73%, respectively. Observed nest success of all translocated females during the study was 67%. By the end of their first year in Strawberry Valley, 100% of the living translocated sage-grouse were in flocks with resident sage-grouse. The translocated grouse attended the same lek as the birds with which they were grouped. In 2006, the peak male count for the only remaining active lek in Strawberry Valley was almost 4 times (135 M) the 6-year pretranslocation (1998–2003) average peak attendance of 36 males (range 24–50 M). Translocations can be an effective management tool to increase small populations of greater sage-grouse when conducted during the breeding season and before target populations have been extirpated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号