首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrapopulational polymorphism in habitat use is widely reported in many animal species. The phenomenon has recently also been recognized in adult female loggerhead sea turtles Caretta caretta , with small females tending to inhabit oceanic areas (where water depths are >200 m) while presumably feeding pelagically and large females tending to inhabit neritic areas (where depths are <200 m) while presumably feeding benthically. In this study, dive recording satellite telemetry units were used to verify their foraging and diving behaviours in these habitats. Two females that nested on Yakushima Island, Japan, were tracked for 124 and 197 days. The small female wandered in the oceanic Pacific, and spent most of the time at 0–25 m depths regardless of day or night, implying that she foraged pelagically at the surface and shallow depths. Her mean dive durations were significantly longer at night than during the day. The large female moved into the neritic East China Sea, and spent most of the time over the continental shelf at 100–150 m depths during the day and at 0–25 m depths at night, suggesting that she alternated between diurnal benthic foraging and nocturnal resting within the depths where she could attain neutral buoyancy. Her mean dive durations were not significantly different between day and night. The increase in dive duration for both turtles coincided with a seasonal decrease in water temperature. The small female sometimes showed midwater dormancy at 0–25 m depths with a duration of >5 h that was in contrast with bottom dormancy by sea turtles inhabiting other regions. The diving behaviours observed during this study were consistent with their estimated main feeding habits, which demonstrated resource polymorphism in a marine reptile.  相似文献   

2.
During 2 years (2001–2003), we performed seasonal aerial surveys in the central Spanish Mediterranean following the transect line methodology in order to determine the abundance and distribution patterns of loggerhead turtles Caretta caretta . We surveyed a total of 16 700 km, accounting for 770 turtle sightings. Loggerhead turtles were present with high abundance all year round. No seasonal differences in abundance were found, except in spring 2001, where the density of turtles was higher than in the other seasons. Our results show that the Western Mediterranean is not a 'summer' feeding area as proposed previously, as a high number of turtles are present throughout the year. The average surface density of turtles in the whole study area was 0.21 turtles km−2 [95% confidence interval (CI): 0.17–0.25], and the mean abundance was 6653 turtles (95% CI: 5514–8027). The data relate to the number of turtles on the surface only, as diving turtles escape observation. Correcting our estimations of diving behaviour data in the area, the absolute abundance was 18 954 turtles (95% CI: 6679–53 786). Bearing in mind that around 25 000 loggerheads are caught per year in the Spanish Mediterranean, our results indicate that accidental captures seem to be a significant threat for this species, and conservation measures have to be implemented to avoid a non-sustainable situation.  相似文献   

3.
In aquatic vertebrates that acquire oxygen aerially dive duration scales positively with body mass, i.e. larger animals can dive for longer periods, however in bimodally respiring animals the relationship between dive duration and body mass is unclear. In this study we investigated the relationships between body size, aquatic respiration, and dive duration in the bimodally respiring turtle, Elseya albagula. Under normoxic conditions, dive duration was found to be independent of body mass. The dive durations of smaller turtles were equivalent to that of larger individuals despite their relatively smaller oxygen stores and higher mass specific metabolic rates. Smaller turtles were able to increase their dive duration through the use of aquatic respiration. Smaller turtles had a relatively higher cloacal bursae surface area than larger turtles, which allowed them to extract a relatively larger amount of oxygen from the water. By removing the ability to respire aquatically (hypoxic conditions), the dive duration of the smaller turtles significantly decreased restoring the normal positive relationship between body size and dive duration that is seen in other air-breathing vertebrates.  相似文献   

4.
We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp''s ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp''s ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp''s ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill''s impacts may extend far beyond the current focus on the northern Gulf of Mexico.  相似文献   

5.
Swimming behaviour and dispersal patterns were studied in headstarted loggerhead turtles Caretta caretta which were released at three different sites on the Caribbean island of Curaçao (Netherlands Antilles) and at one site on the neighbouring island of Klein Curaçao, after 1–2.5 yrs of captivity. Turtles were tagged and followed up to a distance of 6125 m offshore, using a boat with a Global Positioning Unit. The released turtles reverted to typical hatchling behaviour and showed an offshore migration almost perpendicular to the coastline. No significant differences were found in directional swimming among the four sites. The turtles swam almost continuously about 30 cm under the water surface; their mean overall swimming speed was higher than in adult wild loggerheads suggesting a 'frenzy'-like swimming stage. The turtles exhibited diving behaviour, and the dive frequency and duration was comparable to that of similar-sized (wild) turtles. The present study demonstrates that upon release the headstarted loggerheads behave naturally and show dispersal patterns similar to wild hatchling turtles. The fact that the released turtles were still able to show offshore directional swimming suggests that the headstarting did not affect their short-term orientation abilities.  相似文献   

6.
Aim Although satellite tracking has yielded much information regarding the migrations and habitat use of threatened marine species, relatively little has been published about the environmental niche for loggerhead sea turtles Caretta caretta in north‐west Atlantic waters. Location North Carolina, South Carolina and Georgia, USA. Methods We tracked 68 adult female turtles between 1998 and 2008, one of the largest sample sizes to date, for 372.2 ± 210.4 days (mean ± SD). Results We identified two strategies: (1) ‘seasonal’ migrations between summer and winter coastal areas (n = 47), although some turtles made oceanic excursions (n = 4) and (2) occupation of more southerly ‘year‐round’ ranges (n = 18). Seasonal turtles occupied summer home ranges of 645.1 km2 (median, n = 42; using α‐hulls) predominantly north of 35 ° latitude and winter home ranges of 339.0 km2 (n = 24) in a relatively small area on the narrow shelf off North Carolina. We tracked some of these turtles through successive summer (n = 8) and winter (n = 3) seasons, showing inter‐annual home range repeatability to within 14.5 km of summer areas and 10.3 km of winter areas. For year‐round turtles, home ranges were 1889.9 km2. Turtles should be tracked for at least 80 days to reliably estimate the home range size in seasonal habitats. The equivalent minimum duration for ‘year‐round’ turtles is more complex to derive. We define an environmental envelope of the distribution of North American loggerhead turtles: warm waters (between 18.2 and 29.2 °C) on the coastal shelf (in depths of 3.0–89.0 m). Main conclusions Our findings show that adult female loggerhead turtles show predictable, repeatable home range behaviour and do not generally leave waters of the USA, nor the continental shelf (< 200m depth). These data offer insights for future marine management, particularly if they were combined with those from the other management units in the USA.  相似文献   

7.
We used Satellite Relay Data Loggers to obtain the first dive profiles for critically endangered leatherback turtles outside the nesting season. As individuals moved from the Caribbean out into the Atlantic, key aspects of their diving behaviour changed markedly, in line with theoretical predictions for how dive duration should vary with foraging success. In particular, in the Atlantic, where foraging success is expected to be higher, dives became much longer than in the Caribbean. The deepest-ever dive profile recorded for a reptile was obtained in the oceanic Atlantic, with a 54-min dive to 626 m on 26 August 2002. However, dives were typically much shallower (generally <200 m) and shorter (<40 min). These results highlight the suitability of this species for testing models of dive performance.  相似文献   

8.
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2-5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles.  相似文献   

9.
Oceanic dispersal characterizes the early juvenile life-stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available on their distribution during this period, limiting the effectiveness of efforts to understand environmental and anthropogenic impacts on these species. Here we present a simple model to predict annual variation in the distribution and abundance of oceanic-stage juvenile sea turtles based on species’ reproductive output, movement and mortality. We simulated dispersal of 25 cohorts (1993–2017) of oceanic-stage juveniles by tracking the movements of virtual hatchling sea turtles released in a hindcast ocean circulation model. We then used estimates of annual hatchling production from Kemp's ridley Lepidochelys kempii (n = 3), green Chelonia mydas (n = 8) and loggerhead Caretta caretta (n = 5) nesting areas in the northwestern Atlantic (inclusive of the Gulf of Mexico, Caribbean Sea and eastern seaboard of the U.S.) and their stage-specific mortality rates to weight dispersal predictions. The model's predictions indicate spatial heterogeneity in turtle distribution across their marine range, identify locations of increasing turtle abundance (notably along the U.S. coast), and provide valuable context for temporal variation in the stranding of young sea turtles across the Gulf of Mexico. Further effort to collect demographic, distribution and behavioral data that refine, complement and extend the utility of this modeling approach for sea turtles and other dispersive marine taxa is warranted. Finally, generating these spatially-explicit predictions of turtle abundance required extensive international collaboration among scientists; our findings indicate that continued conservation of these sea turtle populations and the management of the numerous anthropogenic activities that operate in the northwestern Atlantic Ocean will require similar international coordination.  相似文献   

10.
For six green turtles, Chelonia mydas, that had nested on Ascension Island in the South Atlantic, we used time-depth recorders to examine their diving behaviour during the subsequent internesting interval (10-12 days). All the turtles performed dives where they remained at a fixed depth for a long period, surfaced briefly and then dived to the same depth again. It is generally believed these dive profiles are caused by the turtles resting on the sea bed. The maximum depth that turtles routinely reached on these resting dives was between 18 and 20 m, with resting dives deeper than 20 m being extremely rare. Resting dive duration increased significantly with deeper dives. From this relationship, and assuming that turtles with fully inflated lungs at the surface need to dive to 19 m to achieve negative buoyancy, we estimated for two turtles that the oxygen consumption during resting dives was 0.016 and 0.020 litres O(2)/kg per h, respectively. This is similar to the value predicted from the allometric scaling relationship for the minimal oxygen consumption of turtles. We calculated that the energy conserved by resting during the internesting period may appreciably increase the reproductive output of females. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

11.
The diving behaviour of four leatherback turtles (Dermochelys coriacea) was recorded for periods of 0.5-8.1 months during their postnesting movements in the Indian and Atlantic Oceans, when they covered 1569-18,994 km. Dive data were obtained using satellite-linked transmitters which also provided information on the dive depths and profiles of the turtles. Turtles mainly dove to depths < 200 m, with maximum dive durations under 30-40 min and exhibited diel variations in their diving activity for most part of the routes, with dives being usually longer at night. Diurnal dives were in general quite short, but cases of very deep (> 900 m) and prolonged (> 70 min) dives were however recorded only during daytime. The three turtles that were tracked for the longest time showed a marked change in behaviour during the tracking, decreasing their dive durations and ceasing to dive deeply. Moreover, diel variations disappeared, with nocturnal dives becoming short and numerous. This change in turtle diving activity appeared to be related to water temperature, suggesting an influence of seasonal prey availability on their diving behaviour. The turtle diving activity was independent on the shape of their routes, with no changes between linear movements in the core of main currents or looping segments in presence of oceanic eddies.  相似文献   

12.
Marine turtle lungs have multiple functions including respiration, oxygen storage and buoyancy regulation, so lung size is an important indicator of dive performance. We determined maximum lung volumes (V(L)) for 30 individuals from three species (Caretta caretta n=13; Eretmochelys imbricata n=12; Natator depressus n=5) across a range of body masses (M(b)): 0.9 to 46 kg. V(L) was 114 ml kg(-1) and increased with M(b) with a scaling factor of 0.92. Based on these values for V(L) we demonstrated that diving capacities (assessed via aerobic dive limits) of marine turtles were potentially over-estimated when the V(L)-body mass effect was not considered (by 10 to 20% for 5 to 25 kg turtles and by >20% for turtles > or =25 kg). While aerobic dive limits scale with an exponent of 0.6, an analysis of average dive durations in free-ranging chelonian marine turtles revealed that dive duration increases with a mass exponent of 0.51, although there was considerable scatter around the regression line. While this highlights the need to determine more parameters that affect the duration-body mass relationship, our results provide a reference point for calculating oxygen storage capacities and air volumes available for buoyancy control.  相似文献   

13.
Green turtles Chelonia mydas of immature and adult size (n = 19, curved carapace length 49 to 118 cm) were equipped with time-depth recorders for short periods (≤ 7 d) to investigate diel and seasonal variation in diving behaviour. Research sessions were distributed over 2 years to cover seasonal variation in sea temperature from 14 °C to 30 °C. Diurnal dives were shallower and shorter than nocturnal dives, with diel patterns also evident in dawn and dusk peaks in occupation of depths within 1 m of the surface, elevated diurnal occupation of depths 1 to 2 m below the surface and elevated nocturnal occupation of depths > 2 m. Dive duration increased as sea temperature decreased, showing strong negative correlation by day and by night. Study turtles made resting dives that were 3 to 4 times longer in median duration, and six times longer in maximum duration, at cool temperatures than they were at warm temperatures, but there was no evidence of winter diapause or location shift to avoid cold water. The large majority of turtles spent 89 to 100% of their time at depths ≤ 5 m below the surface, three individuals did not exceed 3 m and the maximum depth recorded by any turtle was 7.9 m, although deeper water was available. Furthermore, the dive data indicated that study turtles collectively spent more than 80% of their time at charted (low tide) depths of 3 m or less, indicating that they consistently used the shallow margins of the bay where human activities tend to be concentrated, thereby potentially increasing their exposure to anthropogenic threats.  相似文献   

14.
Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake ( o 2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o 2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o 2. A o 2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets.  相似文献   

15.
Although the Atlantic waters of North America support hundreds of thousands of loggerhead sea turtles ( Caretta caretta ), remarkably little is known regarding their migratory ecology and habitat use. We integrate satellite tracking with remotely sensed oceanographic data to uncover two different migratory strategies used by loggerhead turtles at the northern part of their range. Most turtles travelled from the nesting beach to forage at higher latitudes in summer, before migrating south to wintering grounds in the autumn. Others moved south after nesting to forage for up to 514 days and did not make an autumn migration. Both groups utilized warm waters at the very edge of the Gulf Stream during winter: for southerly turtles obviating seasonal migration, and for northerly turtles minimizing the distance, time and energy required to reach northern areas for subsequent foraging seasons, avoiding lethally cold winter temperatures in inshore waters at the same latitude, and reducing energy costs that would be incurred within the fast-flowing Gulf Stream. Females made long resting dives of up to 7 h 24 min, effectively hibernating during the colder months. Offshore federal waters of the USA constitute a more important habitat for both foraging and wintering turtles than previously appreciated. These areas are potential hotspots for interaction with fisheries and proposed US military training activities and should receive special monitoring efforts to fully assess the extent of overlap.  相似文献   

16.
Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.  相似文献   

17.
 Time-depth recorders were deployed on immature hawksbill turtles at the southwestern reefs of Mona Island, Puerto Rico, to examine patterns of diving behavior. Diving profiles of 10–12 day duration were obtained from five turtles ranging in carapace length from 27–52 cm. Turtles exhibited contrasting diurnal and nocturnal diving behaviors. During daylight hours, dives were made 92% of the time, featured continuous depth variation and were attributed to foraging activity. Foraging dive duration increased with turtle size; individual mean dive durations ranged from 19–26 min; mean post-dive surface intervals ranged from 37–64 s; mean depths ranged from 8–10 m. At night, dives were made 86% of the time to constant depths and were interpreted as resting behavior. Resting dive durations were not dependent on turtle size; individual mean dive durations ranged from 35–47 min; mean post-dive surface intervals ranged from 36–60 s; and mean depths from 7–10 m. Immature hawksbill turtles maintained short term home ranges several hundred meters in extension. Accepted: 2 July 1996  相似文献   

18.
The permanent eastward current at the Straits of Gibraltar may trap small Atlantic loggerhead sea turtles (Caretta caretta) inside the western Mediterranean until their swimming and diving skills improve enough to allow them counter-current swimming abilities through the current. A captivity experiment with twelve loggerhead sea turtles (straight carapace length or SCL range: 25.3-48.0 cm) revealed that the average critical velocity of this species within the considered length range was 0.38 ± 0.16 m s− 1 or 1.01 ± 0.24 bl s− 1. As a consequence, loggerhead sea turtles are predicted to require a minimum SCL of 36.0 cm to swim counter-current through the Straits of Gibraltar, where the water velocity ranges 0.31-0.37 m s− 1. Genetic analysis of 105 specimens using one mitochondrial marker and seven microsatellites, as well as the recapture of three tagged individuals, support this conclusion; all Mediterranean individuals found in the Atlantic side of the Straits were not smaller than 36.0 cm SCL and the average length (47.3 cm SCL) was significantly higher than that of the Mediterranean turtles in the Mediterranean side of the Straits (31.6 cm SCL). Furthermore, the average length of the turtles of any origin moving from the Mediterranean to the Atlantic was much larger than 36.0 cm (SCL: 54.5 cm SCL), which may indicate the intervention of a different, yet unidentified mechanism restricting east-westward movement. The Algerian current, running along northern Africa, may at least partially explain the delayed departure of loggerhead sea turtles from the Mediterranean Sea to the Atlantic Ocean, as it would force the eastward drift of loggerheads occupying the southwestern Mediterranean. Exchange through the Straits is asymmetrical, and Atlantic turtles are found to enter the Mediterranean at a length of about 20.5 cm. However, once in the Mediterranean they would be retained there for up to 7.9 years, due to the surface circulation pattern. This increases the time span at which turtles are exposed to a high mortality rate, caused by fishing.  相似文献   

19.
Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.  相似文献   

20.
The helminth fauna of pelagic-stage loggerhead sea turtles, Caretta caretta, is still poorly known. Here, we describe the helminth-component community of healthy, free-ranging juvenile loggerhead sea turtles captured in the waters around Madeira Island, Portugal. Fifty-seven were used in this study. The esophagus, stomach, intestine, liver, gallbladder, spleen, kidneys, trachea, bronchi, urinary bladder, heart, left and right aortas, and coelomic cavity were macroscopically inspected; organs and tissues were removed and washed through a sieve. A search for parasites was made using a stereoscopic microscope; recovered parasites were fixed and stored in 70% alcohol until staining and identification. Prevalence, mean intensity, and mean abundance values were recorded. In total, 156 parasite specimens belonging to 9 species were found: nematodes included Anisakis simplex s.l. (larvae) and an unidentified species; digenetic trematodes present were Enodiotrema megachondrus, Rhytidodes gelatinosus, Pyelosomum renicapite, and Calycodes anthos; acanthocephalans included Bolbosoma vasculosum and Rhadinorhynchus pristis; a single cestode, Nybelinia sp., was present. Parasite infections were found to have both low prevalences and intensities. Possible reasons for this include the oligotrophic conditions of the pelagic habitat around Madeira; a 'dilution effect' because of the vastness of the area; and the small size, and thus ingestion rate, of the turtles. Results are discussed in terms of the various turtle populations that may use the waters surrounding Madeira. This work provides valuable information on the parasite fauna of a poorly known stage in the life of loggerhead sea turtles, thereby filling a fundamental gap with regard to features of the parasite fauna in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号