首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Bird populations in grasslands have experienced declines coinciding with loss and fragmentation of prairies. The United States Department of Agriculture (USDA)-administered Conservation Reserve Program (CRP) is the most extensive grassland restoration program in North America and it has especially benefitted grassland birds. Grazing by domestic cattle has been restricted in CRP during avian nesting seasons despite the potential improvements in structuring habitat for a greater diversity of grassland bird species. Potential negative consequences of grazing in CRP grasslands include trampling of nests by cattle, reductions in nest concealment from predators, and attraction of brood-parasitic brown-headed cowbirds (Molothrus ater). We designed an experiment to test for effects of cattle grazing in CRP fields during the nesting season on nest survival and brood parasitism of 5 bird species that commonly nest in CRP grasslands: mourning dove (Zenaida macroura), grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern (Sturnella magna) and western (S. neglecta) meadowlarks. Grazing was implemented during summers 2017 and 2018 on 17 of 36 fields followed by a year of rest on all fields in 2019. Of the 879 nests on grazed fields, only 4 were likely trampled by cattle (vs. 54% of all nests estimated as failing because of depredation). Experimental grazing (grazed vs. ungrazed fields) had variable effects on nest survival and cowbird parasitism among the bird species analyzed. Negative effects of grazing on daily nest survival of dickcissel and meadowlarks were apparent, at least in some years. We found no direct effects of grazing on nest survival of mourning dove or grasshopper sparrow. Probability and intensity (cowbird offspring/nest) of cowbird parasitism in dickcissel nests was higher on grazed versus ungrazed sites but only in conservation practice (CP) CP2 (vs. CP25 fields). Parasitism probability of grasshopper sparrow nests by cowbirds was higher on grazed fields in the 2 years after introduction of cattle in 2017. Greater vegetative concealment around nest sites was associated with reduced cowbird parasitism of meadowlark and grasshopper sparrow nests and higher nest survival for grasshopper sparrows. Reductions in vegetative height caused by longer-term or high-intensity grazing might therefore have negative consequences for some grassland birds by increasing nest site visibility and exposure to cowbird parasitism. Our results indicate that cattle grazing in CRP fields during the nesting season might have some negative effects on reproductive success of some grassland bird species, at least in the short term; however, the potential improvements of structuring habitat to accommodate more grassland bird species and increasing landowner participation in the CRP are considerable.  相似文献   

3.
    
The Pennsylvania Conservation Reserve Enhancement Program (CREP) was initiated in 2000 and within 4 years, 40,000 ha of conservation grasslands were established in southern Pennsylvania. We determined whether CREP habitat has benefitted farmland and grassland bird populations during the 10 years since the program began. From 2001 to 2010, bird surveyors conducted road-side point counts in a 20-county area in south-central Pennsylvania. We observed positive CREP effects on the abundances (in 2009–2010) and changes in abundance (from 2001–2002 to 2009–2010) of 5 species, including eastern meadowlark (Sturnella magna); negative CREP effects for 3 species, including vesper sparrow (Pooecetes gramineus); and no CREP effects for 2 species, including grasshopper sparrows (Ammodramus savannarum). We additionally observed changes in the size and direction of the local CREP effects (within 250 m of count locations) depending on the amount of CREP grassland or field cover in the surrounding landscape (within 5,000 m of survey routes). For example, the local CREP effect on the change in abundance of eastern meadowlarks was 15 times greater at points nested within landscapes with 9% CREP cover compared to landscapes with 1% CREP cover, indicating the potential for greater benefits of adding new CREP grasslands to areas with more CREP habitat already in the surrounding area. We conclude that more careful spatial targeting of CREP enrollment could improve the benefits of the program for farmland and grassland bird populations. © The Wildlife Society, 2013  相似文献   

4.
    
Most prairie restorations fail to produce the diversity of species found in unplowed remnants. This lack of restored diversity is hypothesized to be partly due to the inhibition of forb species by high seeding densities of dominant grasses and partly due to the low seeding densities of forbs used in many restorations. We tested this hypothesis by sowing various densities of forb and warm-season grass seeds into a restoration begun on bare soil. This is the first replicated restoration experiment we are aware of that varies grass seeding densities to examine the effects on forbs. Four years after seeding, we found that higher densities of grass seeds decreased forb cover, biomass, and richness, and higher densities of forb seeds increased forb richness. These results suggest that dominant grasses compete strongly with native forb species and that many forb species thrive when they are spatially separated from dominant grasses. The results also suggest that seed availability limits the establishment of some forbs. Forb diversity can therefore be increased by decreasing grass seeding density, by increasing forb seeding density, or both. However, forb seeds are generally expensive, and increasing forb seeding density across the entire area of a restoration may be prohibitively expensive. We therefore recommend a low seeding density of dominant grasses, and we recommend spatially separating forbs from dominant grasses by adding most forb seeds to areas with little to no dominant grasses and by adding the rest of the forb seeds to areas with a low density of dominant grasses.  相似文献   

5.
    
The United States Department of Agriculture (USDA) authorized mid-contract management (MCM) in 2004 to restore and maintain plant species composition and structural diversity in aging Conservation Reserve Program (CRP) fields for the northern bobwhite (Colinus virginianus) and other grassland-dependent wildlife. We implemented 3 USDA-approved MCM regimes (i.e., strip disking, strip glyphosate spraying, and strip glyphosate spraying in combination with legume interseeding) in 60 tall fescue (Festuca arundinaceae) CRP monocultures in south-central Illinois, USA, during 2005–2008. We hypothesized that adult bobwhite relative densities and brood presence would increase following MCM that effectively restored early successional plant communities in otherwise monotypic stands of tall fescue. We estimated annual adult bobwhite relative densities and brood presence-absence in managed and unmanaged CRP. We modeled vegetation characteristics and landscape composition to identify factors influencing adult densities and brood presence. Adult relative densities were 2-fold greater in managed fields than in unmanaged fields, and were negatively correlated with greater percentages of grass cover. Adult densities were positively correlated with greater plant species diversity, and greater percentages of bare ground and legume cover. Logistic regression and odds ratio estimates indicated that fields managed with glyphosate-interseed and glyphosate treatments were 39.6% more likely to have broods than unmanaged CRP, whereas disked fields were 10.0% more likely than unmanaged CRP. These models indicated that the probability of brood presence was greater in fields with increased percentage of bare ground, greater plant species diversity, and decreased percentage of grass and litter cover. These findings suggest that a 3-year rotation of glyphosate or glyphosate-interseed treatments can enhance habitat conditions for adult bobwhites and broods in CRP tall fescue monocultures. © 2011 The Wildlife Society.  相似文献   

6.
7.
    
ABSTRACT Grassland birds endemic to the central shortgrass prairie ecoregion of the United States have experienced steep and widespread declines over the last 3 decades, and factors influencing reproductive success have been implicated. Nest predation is the major cause of nest failure in passerines, and nesting success for some shortgrass prairie birds is exceptionally low. The 3 primary land uses in the central shortgrass prairie ecoregion are native shortgrass prairie rangeland (62%), irrigated and nonirrigated cropland (29%), and Conservation Reserve Program (CRP, 8%). Because shortgrass–cropland edges and CRP may alter the community of small mammal predators of grassland bird nests, I sampled multiple sites on and near the Pawnee National Grasslands in northeast Colorado, USA, to evaluate 1) whether small mammal species richness and densities were greater in CRP fields and shortgrass prairie–cropland edges compared to shortgrass prairie habitats, and 2) whether daily survival probabilities of ground-nesting grassland bird nests were negatively correlated with densities of small mammals. Small mammal species richness and densities, estimated using trapping webs, were generally greater along edges and on CRP sites compared to shortgrass sites. Vegetation did not differ among edges and shortgrass sites but did differ among CRP and shortgrass sites. Daily survival probabilities of artificial nests at edge and CRP sites and natural nests at edge sites did not differ from shortgrass sites, and for natural nests small mammal densities did not affect nest survival. However, estimated daily survival probability of artificial nests was inversely proportional to thirteen-lined ground squirrel (Spermophilus tridecemlineatus) densities. In conclusion, these data suggest that although land-use patterns on the shortgrass prairie area in my study have substantial effects on the small mammal community, insufficient data existed to determine whether land-use patterns or small mammal density were affecting grassland bird nest survival. These findings will be useful to managers for predicting the effects of land-use changes in the shortgrass prairie on small mammal communities and avian nest success.  相似文献   

8.
9.
    
The northern bobwhite (Colinus virginianus; hereafter bobwhite) has experienced substantial population declines in recent decades in the United States, and especially in Maryland and Delaware. The United States Department of Agriculture's Conservation Reserve Program (CRP) could provide additional habitat for bobwhites, leading to an increase in bobwhite abundance. I investigated if bobwhite abundance was related to the percent cover of CRP land and landscape attributes in local landscapes on Maryland's Eastern Shore and Delaware. Observers conducted bobwhite point transect surveys at 113 locations during the breeding seasons of 2006–2007, and I calculated landscape metrics for 500-m radius landscapes centered on each point transect location. Most CRP land in the study landscapes was planted to herbaceous vegetation. Bobwhite abundance was strongly positively associated with percent cover of CRP land in the landscape but was not strongly related to percent cover of agriculture or forest or to landscape patch density. These results suggest that the CRP has created additional habitat for bobwhites in Maryland and Delaware and that landscapes with greater proportions of herbaceous CRP practices support more bobwhites. © 2012 The Wildlife Society.  相似文献   

10.
为了系统掌握甘肃安西极旱荒漠国家级自然保护区野生动物的种类、数量、分布以及种群动态变化趋势, 我们于2017年8月至2019年9月, 在保护区选取3个样地布设60台红外相机, 对保护区兽类和鸟类多样性进行调查。红外相机累计观测29,147个工作日, 采集独立有效照片11,134张。共观测到兽类6目10科18种, 鸟类7目16科31种。国家I级重点保护野生动物有5种, 国家Ⅱ级重点保护野生动物有11种。兽类中相对多度较高的物种有蒙古兔(Lepus tolai, RAI = 12.749)、岩羊(Pseudois nayaur, RAI = 4.690)、北山羊(Capra sibirica, RAI = 4.333)、蒙古野驴(Equus hemionus, RAI = 3.163)、赤狐(Vulpes vulpes, RAI = 2.601), 分布最普遍的是赤狐和蒙古兔; 鸟类中相对多度较高的物种有石鸡(Alectoris chukar, RAI = 1.678)、岩鸽(Columba rupestris, RAI = 1.142)、漠䳭(Oenanthe deserti, RAI = 0.865)、赭红尾鸲(Phoenicurus ochruros, RAI = 0.374)和沙䳭(Oenanthe isabellina, RAI = 0.196), 其中漠䳭和石鸡的分布最广。豺(Cuon alpinus)、石貂(Martes foina)、黄鼬(Mustela sibirica)和白唇鹿(Cervus albirostris)为保护区新记录物种, 雪豹(Panthera uncia)也是保护区建立以来首次观测到。保护区人为干扰减少是造成物种新分布、数量增多的主要原因。  相似文献   

11.
    
Filter strips are strips of herbaceous vegetation planted along agricultural field margins adjacent to streams or wetlands and are designed to intercept sediment, nutrients, and agrichemicals. Roughly 16,000 ha of filter strips have been established in Maryland through the United States Department of Agriculture's Conservation Reserve Enhancement Program. Filter strips often represent the only uncultivated herbaceous areas on farmland in Maryland and therefore may be important habitat for early-successional bird species. Most filter strips in Maryland are planted to either native warm-season grasses or cool-season grasses and range in width from 10.7 m to 91.4 m. From 2004 to 2007 we studied the breeding and wintering bird communities in filter strips adjacent to wooded edges and non-buffered field edges and the effect that grass type and width of filter strips had on bird community composition. We used 5 bird community metrics (total bird density, species richness, scrub-shrub bird density, grassland bird density, and total avian conservation value), species-specific densities, nest densities, and nest survival estimates to assess the habitat value of filter strips for birds. Breeding and wintering bird community metrics were greater in filter strips than in non-buffered field edges but did not differ between cool-season and warm-season grass filter strips. Most breeding bird community metrics were negatively related to the percent cover of orchardgrass (Dactylis glomerata) in ≥1 yr. Breeding bird density was greater in narrow (<30 m) compared to wide (>60 m) filter strips. Our results suggest that narrow filter strips adjacent to wooded edges can provide habitat for many bird species but that wide filter strips provide better habitat for grassland birds, particularly obligate grassland species. If bird conservation is an objective, avoid planting orchardgrass in filter strips and reduce or eliminate orchardgrass from filter strips through management practices. © 2011 The Wildlife Society.  相似文献   

12.
放牧对草地群落与土壤特征的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
针对放牧干扰对草地生态系统的影响,采用回归分析和典型对应分析(CCA)方法,研究放牧对草地植物群落物种多样性与生产力、土壤碳氮含量与生物量关系的影响。结果表明:(1)与休牧草地相比,放牧草地的地上生物量降低31.63%,凋落物生物量降低134.29%;放牧草地的禾草类生物量提高19.77%,而杂草类生物量和豆科类生物量分别降低31.09%和23.42%。(2)当物种多样性指数小于1.3时,休牧草地的生产力明显高于放牧草地;当物种多样性指数大于1.3时,放牧草地的生产力高于休牧草地。(3)CCA分析显示,家畜主要通过影响群落地上生物量、凋落物质量和土壤容重进而影响土壤的碳氮含量。(4)当群落地上生物量小于100g·m-2时,休牧草地的土壤有机碳和全氮含量高于放牧草地,当群落地上生物量大于100g·m-2时,放牧草地则略高于休牧草地。(5)当群落地下生物量小于1 200g·m-2时,放牧草地土壤有机碳、全氮含量高于休牧草地;当地下生物量大于1 200g·m-2时,放牧草地则略低于休牧草地。  相似文献   

13.
    
Smith GA  Lomolino MV 《Oecologia》2004,138(4):592-602
We tested the hypothesis that black-tailed prairie dogs (Cynomys ludovicianus) influence avian community structure on the shortgrass prairie. We surveyed 36 prairie dog towns and 36 paired sites without prairie dogs during summer and fall of 1997, 1998, and 1999 in the Oklahoma Panhandle. Our surveys totaled 9,040 individual observations for 73 avian species. Significantly distinct avian communities were present on prairie dog towns when compared to sites within four different macrohabitats of the surrounding landscape: open rangeland, scrub/sandsage (Artemisia filifolia) habitats, Conservation Reserve Program (CRP) plots, and fallow crop fields. Relative densities of all bird species combined was higher on prairie dog towns versus paired sites in summer and fall. Mean species richness of birds was significantly higher on prairie dog towns than paired sites during summer, but there were no significant differences in fall. Open rangeland had the highest mean species richness in fall. Assemblages of avian communities differed significantly between prairie dog towns and the four macrohabitat types during summer. Burrowing owls (Athene cunicularia), killdeer (Charadrius vociferous), horned larks (Eremophila alpestris), and meadowlarks (Sturnella spp.) were positively and significantly associated with prairie dog towns during summer, while horned larks and ferruginous hawks (Buteo regalis) were significantly associated with prairie dog towns during fall. Even in their current remnant state, black-tailed prairie dogs continue to play a significant role in the assembly of ecological communities across the Great Plains. Conservation of prairie dogs goes well beyond a single species, and is an important strategy for the preservation of the prairie ecosystem as a whole.  相似文献   

14.
    
Conservation Reserve Program (CRP) fields may provide good habitat for nesting and brood-rearing ring-necked pheasants (Phasianus colchicus) during early stages of succession. But, the success of hens in early successional CRP, relative to late successional CRP and other grassland habitats, has yet to be evaluated. The reproductive period is especially critical for populations of pheasants, and CRP's benefits to hens and chicks may decrease as fields age because of loss of vegetative diversity, decrease in vegetation density, and accumulation of residual litter. During 2005–2006, we evaluated spatial and temporal variation in nest and brood survival for radio-marked hen pheasants in areas of northeastern Nebraska where portions of CRP fields had been recently disced and interseeded (DICRP) with legumes. Nests in DICRP tended to have a higher daily survival rate (0.984; 95% CI: 0.957–0.994) than nests in grasslands (including CRP) that were unmanaged (0.951; 95% CI: 0.941–0.972). The probability of 23-day nest success was 0.696 (95% CI: 0.631–0.762) for DICRP and 0.314 (95% CI: 0.240–0.389) for unmanaged grasslands. Daily brood survival rates varied by habitat type, brood age, and date of hatch. The probability of a brood surviving to day 21 was 0.710 (95% CI: 0.610–0.856). Brood survival rates increased with time spent in DICRP and as the brood aged. Survival decreased as broods spent more time in cropland and peaked seasonally with broods that hatched on 15 June. Brood survival probability, to 21 days, would be reduced to 0.36 (95% CI: 0.100–0.701) if broods in our sample had not used DICRP. We combined nest and brood survival in a productivity model that suggested 2,000 hens, in a landscape with no DICRP, would produce 1,826 chicks, whereas the same hens in a landscape of 100% DICRP would produce 5,398 chicks. Production of first-year roosters more than doubled when hens nested in DICRP. Without DICRP, population growth rates of pheasant populations usually declined; with DICRP, populations stabilized with at annual survival rates of 0.3 or greater. The positive response of nest and brood survival to discing and interseeding CRP provides further evidence that CRP fields must be managed to optimize wildlife benefits. © 2012 The Wildlife Society.  相似文献   

15.
Both the abundance of greater prairie-chickens (Tympanuchus cupido pinnatus) and the area of grassland enrolled in the Conservation Reserve Program (CRP) in northwestern Minnesota, USA, have recently declined. Although wildlife conservation is a stated objective of the CRP, the impact of the CRP on greater prairie-chicken populations has not been quantified. To address that information need, we evaluated the association between greater-prairie chicken lek density (leks/km2), the number of males at leks (males/lek), and CRP enrollments in the context of landscape structure and composition in northwestern Minnesota. Using data from standardized prairie-chicken surveys and land cover in 17 41-km2 survey blocks during 2004–2016, we used a mixed-effect model and a layered approach in an information-theoretic framework at multiple spatial scales to identify covariates related to prairie-chicken abundance. At the landscape scale, lek density was best explained by the amount of CRP grassland and wetland, grassland and wetland with long-term conservation goals (state, federal, and The Nature Conservancy owned); other wetlands managed with variable or no continuity in conservation goals; the contiguity of grasslands; and the number of patches of grasslands and wetlands in each survey block each year. Increasing the amount of CRP grassland in 41-km2 survey blocks by 1 km2 (2.4%) resulted in a corresponding increase of 6% in lek density. At the lek scale, the number of males per lek was best explained by the amount of CRP grassland and other grassland, CRP wetland and other wetland, forests, developed areas, shrubland, and the contiguity of CRP grassland. Increasing the amount of CRP grassland in the 2-km breeding-cycle habitat radius around a lek by 25% (3 km2) corresponded to a 5% increase in males per lek. Our results suggest that both increasing the quantity of grassland CRP and wetland CRP enrollments and aggregating CRP grassland enrollments may increase greater prairie-chicken abundance. © 2019 The Wildlife Society.  相似文献   

16.
17.
    
Abstract: The U.S. Department of Agriculture (USDA) under its Continuous Enrollment Conservation Reserve Program (CRP) has actively promoted establishment of conservation buffers. Although these programs are intended to benefit wildlife in addition to protecting soil and water resources, benefits to grassland birds may be compromised by narrow widths, presence of woody vegetation, and high predation pressure. During 2001 and 2002, we surveyed breeding grassland birds and searched for nests in 33 CRP filter strips that varied in planting mixture (cool-season vs. warm-season grasses) and adjacent edge type (non-wooded vs. wooded). The most abundant species in filter strips were red-winged blackbird (Agelaius phoeniceus), dickcissel (Spiza americana), song sparrow (Melospiza melodia), and common yellowthroat (Geothlypis trichas). Relative abundances of birds and nests were similar between cool-season and warm-season planting mixtures. Dickcissels and red-winged blackbirds and their nests were relatively less abundant at wooded than non-wooded sites. Our nest success estimates generally were low in all treatments, and nest success varied little with the variables we studied. Predation was the major cause of nest failure; 62% of all nests were depredated. Although the most common birds using filter strips are generalists, filter strips also have potential to provide breeding habitat for some species of management concern.  相似文献   

18.
19.
    
We compared potential denitrification and phosphorus (P) sorption in restored depressional wetlands, restored riparian buffers, and natural riparian buffers of central Ohio to determine to what extent systems restored under the U.S. Department of Agriculture's Wetland Reserve Program (WRP) and Conservation Reserve Program (CRP) provide water quality improvement benefits, and to determine which practice is more effective at nutrient retention. We also measured soil nutrient pools (organic C, N, and P) to evaluate the potential for long‐term C sequestration and nutrient accumulation. Depressional wetland soils sorbed twice as much P as riparian soils, but had significantly lower denitrification rates. Phosphorus sorption and denitrification were similar between the restored and natural riparian buffers, although all Natural Resources Conservation Service (NRCS) practices had higher denitrification than agricultural soils. Pools of organic C (2570–3320 g/m2), total N (216–243 g/m2), and total P (60–71 g/m2) were comparable among all three NRCS practices but were greater than nearby agricultural fields and less than natural wetlands in the region. Overall, restored wetlands and restored and natural riparian buffers provide ecosystem services to the landscape that were lost during the conversion to agriculture, but the delivery of services differs among conservation practices, with greater N removal by riparian buffers and greater P removal by wetlands, attributed to differences in landscape position and mineral soil composition. At the landscape, and even global level, wetland and riparian restoration in agricultural landscapes will reintroduce multiple ecosystem services (e.g. C sequestration, water quality improvement, and others) and should be considered in management plans .  相似文献   

20.
    
ABSTRACT Livestock grazing in the shortgrass steppe of the Intermountain region of British Columbia may have a negative impact on ground‐nesting birds, but evidence of such an impact is lacking. We examined nest‐site selection and productivity of ground‐nesting Vesper Sparrows (Pooecetes gramineus) across sites with different grazing histories. From 2006 to 2008, we monitored Vesper Sparrow nests and measured vegetation characteristics known to be affected by grazing within nest patches. We used an information‐theoretic approach to test the relative importance of grazing‐affected vegetation variables as predictors of nest‐site selection, nest survival, and nestling condition. Vesper Sparrows selected nest sites with greater cover of late‐seral grass species that decrease in occurrence in response to grazing (i.e., “decreasers”) than was available in random patches in the same territories. Daily nest survival was also lower for nests surrounded by shorter vegetation (odds ratio = 1.12). However, “decreaser” cover was not associated with either of the two indices of productivity measured (daily nest survival probability and nestling condition). In addition, vegetation height, although an important driver of success, was not linked with nest‐site selection, and no vegetation‐cover variable was positively associated with productivity, despite nest concealment being central to our predictions. This suggests that predation risk for nests in areas with shorter vegetation was being elevated through some factor unrelated to concealment. Our results show that grazing reduced both the availability of suitable habitat for and nesting success of Vesper Sparrows, indicating that grazing could pose a threat to population persistence at a broader scale and could potentially contribute to observed declines. Additional research is needed to determine if grazing guidelines in the Intermountain region of British Columbia should be amended, better enforced, or both to prevent regional declines in populations of ground‐nesting grassland birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号