首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
启动子分析方法的研究进展   总被引:1,自引:0,他引:1  
启动子是基因表达调控的重要顺式元件,其结构与功能的研究是分子生物学的研究热点之一。对启动子与DNA结合蛋白的研究能从转录水平上阐明基因表达的调控机制,从而为更好地构建基因表达调控网络奠定基础,而且启动子与结合蛋白的研究能够帮助我们寻找新的蛋白质。近年来,启动子的研究方法日益增多,大多是借助于DNA和蛋白质相互作用的特性。本文从原核和真核启动子的基本结构、分类入手,对常用的和改进的几种启动子分析方法进行介绍。如生物信息学分析方法、酵母单杂交(Y1H)技术、瞬时转染法(Transient Transfection)、染色质免疫共沉淀(Ch IP)技术、凝胶阻滞分析(EMSA)试验和DNA足纹(DNase I footprinting)分析法等,从原理、优缺点和最新应用等方面的研究进展进行了综述。对近年来出现的新技术新方法的应用前景作了展望,为启动子的结构与功能研究提供借鉴。  相似文献   

2.
Understanding the composition, structure and dynamics of macromolecules and their assemblies is at the forefront of biological science today. Hydroxyl-radical-mediated protein footprinting using mass spectrometry can define macromolecular structure, macromolecular assembly and conformational changes of macromolecules in solution based on measurements of reactivity of amino acid side-chain groups with covalent-modification reagents. Subsequent to oxidation by reactive oxygen species, proteins are digested by specific proteases to generate peptides for analysis by mass spectrometry. Accurate measurements of side-chain reactivity are achieved using quantitative liquid-chromatography-coupled mass spectrometry, whereas the side-chain sites within the macromolecular probes are identified using tandem mass spectrometry. In addition, the use of footprinting data in conjunction with computational modeling approaches is a powerful new method for testing and refining structural models of macromolecules and their complexes.  相似文献   

3.
Within the last decade, nanoscale lipid bilayers have emerged as powerful experimental systems in the analysis of membrane proteins (MPs) for both basic and applied research. These discoidal lipid lamellae are stabilized by annuli of specially engineered amphipathic polypeptides (nanodiscs) or polymers (SMALPs/Lipodisqs®). As biomembrane mimetics, they are well suited for the reconstitution of MPs within a controlled lipid environment. Moreover, because they are water-soluble, they are amenable to solution-based biochemical and biophysical experimentation. Hence, due to their solubility, size, stability, and monodispersity, nanoscale lipid bilayers offer technical advantages over more traditional MP analytic approaches such as detergent solubilization and reconstitution into lipid vesicles. In this article, we review some of the most recent advances in the synthesis of polypeptide- and polymer-bound nanoscale lipid bilayers and their application in the study of MP structure and function.  相似文献   

4.
In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints-positive and/or negative-in the docking step and are also used to decide the type of energy filter-electrostatics or desolvation-in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure.  相似文献   

5.
A challenging requirement for X-ray crystallography or NMR structure determination of membrane proteins (MPs), in contrast to soluble proteins, is the necessary use of amphiphiles to mimic the hydrophobic environment of membranes. A number of new detergents, lipids and non-detergent-like amphiphiles have been developed that stabilize MPs, and these have contributed to increased success in MP structural determinations in recent years. Despite some successes, currently available reagents are inadequate and there remains a pressing need for new amphiphiles. Literature examples and some new developments are selected here as a framework for discussing desirable properties of new amphiphiles for MP structural biology.  相似文献   

6.
7.
Tightly associated with blood vessels in their perivascular niche, human mesenchymal stem cells (MSCs) closely interact with endothelial cells (ECs). MSCs also home to tumours and interact with cancer cells (CCs). Microparticles (MPs) are cell‐derived vesicles released into the extracellular environment along with secreted factors. MPs are capable of intercellular signalling and, as biomolecular shuttles, transfer proteins and RNA from one cell to another. Here, we characterize interactions among ECs, CCs and MSCs via MPs and secreted factors in vitro. MPs and non‐MP secreted factors (Sup) were isolated from serum‐free medium conditioned by human microvascular ECs (HMEC‐1) or by the CC line HT1080. Fluorescently labelled MPs were prepared from cells treated with membrane dyes, and cytosolic GFP‐containing MPs were isolated from cells transduced with CMV‐GFP lentivirus. MSCs were treated with MPs, Sup, or vehicle controls, and analysed for MP uptake, proliferation, migration, activation of intracellular signalling pathways and cytokine release. Fluorescently labelled MPs fused with MSCs, transferring the fluorescent dyes to the MSC surface. GFP was transferred to and retained in MSCs incubated with GFP‐MPs, but not free GFP. Thus, only MP‐associated cellular proteins were taken up and retained by MSCs, suggesting that MP biomolecules, but not secreted factors, are shuttled to MSCs. MP and Sup treatment significantly increased MSC proliferation, migration, and MMP‐1, MMP‐3, CCL‐2/MCP‐1 and IL‐6 secretion compared with vehicle controls. MSCs treated with Sup and MPs also exhibited activated NF‐κB signalling. Taken together, these results suggest that MPs act to regulate MSC functions through several mechanisms.  相似文献   

8.
Membrane proteins (MPs) have become a major focus in structure prediction, due to their medical importance. There is, however, a lack of fast and reliable methods that specialize in the modeling of MP loops. Often methods designed for soluble proteins (SPs) are applied directly to MPs. In this article, we investigate the validity of such an approach in the realm of fragment‐based methods. We also examined the differences in membrane and soluble protein loops that might affect accuracy. We test our ability to predict soluble and MP loops with the previously published method FREAD. We show that it is possible to predict accurately the structure of MP loops using a database of MP fragments (0.5–1 Å median root‐mean‐square deviation). The presence of homologous proteins in the database helps prediction accuracy. However, even when homologues are removed better results are still achieved using fragments of MPs (0.8–1.6 Å) rather than SPs (1–4 Å) to model MP loops. We find that many fragments of SPs have shapes similar to their MP counterparts but have very different sequences; however, they do not appear to differ in their substitution patterns. Our findings may allow further improvements to fragment‐based loop modeling algorithms for MPs. The current version of our proof‐of‐concept loop modeling protocol produces high‐accuracy loop models for MPs and is available as a web server at http://medeller.info/fread . Proteins 2014; 82:175–186. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Structure prediction of membrane proteins   总被引:1,自引:0,他引:1  
There is a large gap between the number of membrane protein (MP) sequences and that of their decoded 3D structures, especially high-resolution structures, due to difficulties in crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for the fundamental understanding of the function of an MP and the interactions between the protein and its inhibitors or activators. In this paper, some computational approaches that have been used to predict MP structures are discussed and compared.  相似文献   

10.
We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence–structure–function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence–structure–function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information. Proteins 2015; 83:1450–1461. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

12.
In this article, a systematic workflow was formulated and implemented to understand selectivity differences and preferred binding patches for bispecific monoclonal antibodies (mAbs) and their parental mAbs on three multimodal cation exchange resin systems. This workflow incorporates chromatographic screening of the parent mAbs and their fragments at various pH followed by surface property mapping and protein footprinting using covalent labeling followed by liquid chromatography–mass spectrometry analysis. The chromatography screens on multimodal resins with the intact mAbs indicated enhanced selectivity as compared to single-mode interaction systems. While the bispecific antibody (bsAb) eluted between the two parental mAbs on most of the resins, the retention of the bispecific transitioned from co-eluting with one parental mAb to the other parental mAb on Capto MMC. To investigate the contribution of different domains, mAb fragments were evaluated and the results indicated that the interactions were likely dominated by the Fab domain at higher pH. Protein surface property maps were then employed to hypothesize the potential preferred binding patches in the solvent-exposed regions of the parental Fabs. Finally, protein footprinting was carried out with the parental mAbs and the bsAb in the bound and unbound states at pH 7.5 to identify the preferred binding patches. Results with the intact mAb analysis supported the hypothesis that interactions with the resins were primarily driven by the residues in the Fab fragments and not the Fc. Furthermore, peptide mapping data indicated that the light chain may be playing a more important role in the higher binding of Parent A as compared with Parent B in these resin systems. Finally, results with the bsAb indicated that both halves of the molecule contributed to binding with the resins, albeit with subtle differences as compared to the parental mAbs. The workflow presented in this paper lays the foundation to systematically study the chromatographic selectivity of large multidomain molecules which can provide insights into improved biomanufacturability and expedited downstream bioprocess development.  相似文献   

13.
Myelopeptides: Bone marrow regulatory mediators   总被引:1,自引:0,他引:1  
Bone marrow cells of various animal species and men produce a group of bioregulatory peptides called myelopeptides (MPs). A highly purified MP fraction and some individual molecules have been isolated from the supernatant of porcine bone marrow cell cultures by reverse phase chromatography.MPs have a wide spectrum of functional activities: immunoregulatory, differentiating and opiate-like. They evoke 2–5-fold stimulation of antibody production to various antigens. They correct some immune defects in MRL/lpr mice with spontaneous autoimmune disorders that results in 2-fold prolongation of the life span of these mice. MPs influence the differentiation of bone marrow and peripheral blood cells derived from healthy and leukemic donors. They induce terminal differentiation in the leukemic human HL-60 cell line. MPs also show an effect on pain sensitivity.A new immunocorrective drug Myelopid has been developed on the basis of MP mixtures. This drug is effectively used in Russia both in medicine and veterinary practice for prophylaxis and treatment of diseases accompanied by immunodeficiency.Two individual MPs were isolated and identified: Phe-Leu-Gly-Phe-Pro-Thr (MP-1) and Leu-Val-Val-Tyr-Pro-Trp (MP-2). MP-1 displays immunoregulatory activity; MP-2 abolishes the inhibitory effect of leukemic cells on T-lymphocyte functional activity.MPs seem to provide not only immunoregulation but also to participate in complex interactions between different systems in the organism.  相似文献   

14.
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1–2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug‐specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans‐membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α‐helical MPs as well as β‐barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge‐based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. Proteins 2015; 83:1–24. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
MPtopo: A database of membrane protein topology   总被引:12,自引:0,他引:12       下载免费PDF全文
The reliability of the transmembrane (TM) sequence assignments for membrane proteins (MPs) in standard sequence databases is uncertain because the vast majority are based on hydropathy plots. A database of MPs with dependable assignments is necessary for developing new computational tools for the prediction of MP structure. We have therefore created MPtopo, a database of MPs whose topologies have been verified experimentally by means of crystallography, gene fusion, and other methods. Tests using MPtopo strongly validated four existing MP topology-prediction algorithms. MPtopo is freely available over the internet and can be queried by means of an SQL-based search engine.  相似文献   

16.
Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high mass accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI of microbial metabolites. This systematic analysis gave insight into the ionization and fragmentation characteristics of the different metabolites. With this insight, a small study of metabolic footprinting with ESI-MS demonstrated that biological information can be extracted from footprinting spectra. Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Microparticles (MPs) are sub-micron membrane vesicles (100–1000 nm) shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM) the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to –80°C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.  相似文献   

18.
α-Helical membrane proteins (MPs) are the targets for many pharmaceutical drugs and play important roles in human physiology. In recent years, significant progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck in MP crystallography still remains, namely, the identification of conditions that give crystals that are suitable for structural determination. In 2008, we undertook an analysis of the crystallization conditions for 121 α-helical MPs to design a rationalized sparse matrix crystallization screen, MemGold. We now report an updated analysis that includes a further 133 conditions. The results reveal the current trends in α-helical MP crystallization with notable differences since 2008. The updated information has been used to design new crystallization and additive screens that should prove useful for both initial crystallization scouting and subsequent crystal optimization.  相似文献   

19.
Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. The results are also compared with data from hydroxyl radical-mediated oxidative footprinting on the same protein, showing that complementary information is gained from the 2 approaches, although the number of target residues in carbodiimide/GEE labeling is fewer. Overall, this approach is an accurate and precise method for assessing protein structure of biologic drugs.  相似文献   

20.
BACKGROUND: Platelet-derived microparticles (MPs) are believed to play an important role in coagulation and inflammatory disorders. Unfortunately, MP size renders them difficult to study and analyze by conventional flow cytometry. METHODS: We analyzed and characterized platelet-derived MPs, using antibodies against the major surface glycoproteins (GP), the platelet activation antigen P-selectin (CD62P), and a marker of procoagulant activity (phosphatidylserine exposure). MPs were generated by exposure of platelets to thrombin receptor activating peptide (TRAP) or ionophore. Both agonists induced significant microvesiculation of platelets, and the resulting MPs were analyzed by a new digital flow cytometer: Becton-Dickinson FACSAria. RESULTS: Membrane GPs were equally well represented in MPs generated by either reagent. In contrast, P-selectin was more intensely expressed in TRAP-MPs, while phosphatidylserine (PS) expression was markedly increased in ionophore-MPs. Two distinct populations of TRAP-MPs (one PS-positive and another PS-negative) were apparent. The latter characteristic facilitated sorting of MPs according to their PS exposure. CONCLUSIONS: The data presented herein show a significant improvement in the methodology applied until now to the characterization of MPs. The ability to characterize and sort MP subpopulations may help to resolve their contributions to normal and pathological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号