首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ecological theory predicts that individual survival should vary between sex and age categories due to differences in allocation of nutritional resources for growth and reproductive activities. During periods of environmental stress, such relationships may be exacerbated, and affect sex and age classes differently. We evaluated support for hypotheses about the relative roles of sex, age, and winter and summer climate on the probability of mountain goat (Oreamnos americanus) survival in coastal Alaska. Specifically, we used known-fates analyses (Program MARK) to model the effects of age, sex, and climatic variation on survival using data collected from 279 radio-marked mountain goats (118 M, 161 F) in 9 separate study areas during 1977–2008. Models including age, sex, winter snowfall, and average daily summer temperature (during Jul–Aug) best explained variation in survival probability of mountain goats. Specifically, our findings revealed that old animals (9+ yr) have lower survival than younger animals. In addition, males tended to have lower survival than females, though differences only existed among prime-aged adult (5–8 yr) and old (9+ yr) age classes. Winter climate exerted the strongest effects on mountain goat survival; summer climate, however, was significant and principally influenced survival during the following winter via indirect effects. Furthermore, old animals were more sensitive to the effects of winter conditions than young or prime-aged animals. These findings detail how climate interacts with sex and age characteristics to affect mountain goat survival. Critically, we provide baseline survival rate statistics across various age, sex, and climate scenarios. These data will assist conservation and management of mountain goats by enabling detailed, model-based demographic forecasting of human and/or climate-based population impacts. © 2011 The Wildlife Society.  相似文献   

2.
Wild sheep in North America are highly prized by hunters and most harvest regulations restrict legal harvest to males with a specified minimum horn curl. Because reproductive success is skewed toward larger males that are socially dominant, these regulations may select against high-quality, fast-growing males. To evaluate potential selective effects of alternative management strategies, we analyzed horn increment measures of males harvested over 28 yr (1975–2003) in 2 bighorn sheep (Ovis canadensis) ecotypes in British Columbia, Canada. Using mixed-effect models we examined variation in hunter selection for horn size, early horn growth, and male age under different harvest regulations (Full Curl, Three Quarter Curl, Any Ram). Under all regulations, males with the greatest early horn growth were harvested at the youngest ages, before the age at which large horns influence reproductive success. Early growth decreased with harvest age and until ≥7 yr of age it was greatest in males harvested under Full Curl regulation. Permit type (General vs. Limited Entry Hunt) and hunter origin (British Columbia Resident vs. Non-Resident) had little effect on horn size of harvested males. Full Curl regulations increased the average age of harvested males by <1 yr relative to Three-Quarter Curl regulations. Age-specific horn measures in the California ecotype harvested under Three-Quarter Curl regulations declined over time but we observed no temporal declines in the Rocky Mountain ecotype, primarily harvested under Full Curl regulations. Management strategies that protect some males with greater early horn growth or provide harvest refuges to maintain genetic diversity are likely to reduce potential for negative effects of artificial selection. © 2010 The Wildlife Society  相似文献   

3.
Elucidating patterns of adult survival rates is key to understanding population dynamics of large mammals. We used data from 7 separate studies of mountain goats (Oreamnos americanus) conducted from 2002 through 2022 in western Washington, USA, to quantify survival rates in relation to key biotic and abiotic factors using known fate models implemented in program MARK. We monitored 324 (206 females, 118 males) radio-marked mountain goats for 178,339 days. A substantial number of mountain goats in our sample (n = 217) had been translocated from the Olympic Peninsula to the Cascade Mountains on Washington's mainland, providing an added opportunity to examine translocation effects. We adopted a sequential modeling approach, first building a set of models to examine fundamental survival patterns by age, sex, season, study area, and translocated status. We used variables retained from the top model in a second set to investigate relationships between annual survival and local weather covariates hypothesized by previous studies to influence mountain goat behavior, habitat selection, and vital rates. Survival among adult females in spring was slightly lower than other sex and age categories, but seasonal patterns were otherwise not evident. There were significant negative relationships between survival and winter snow depth, an index of the previous year's drought, and mean daily temperature during the previous May, and a positive relationship with previous year's precipitation. Weather effects were similar among resident and translocated animals. By the end of the study period, weather effects had evidently contributed to reductions in mountain goat survival to a level low enough that population stability was unlikely. Because the frequency of droughts and warm spring temperatures are expected to increase with climate change, mountain goat populations in Washington will likely be increasingly challenged as the atmosphere warms.  相似文献   

4.
Hunting remains the cornerstone of the North American model of wildlife conservation and management. Nevertheless, research has indicated the potential for hunting to adversely influence size of horn-like structures of some ungulates. In polygynous ungulates, mating success of males is strongly correlated with body size and size of horn-like structures; consequently, sexual selection has favored the development of large horns and antlers. Horn-like structures are biologically important and are of great cultural interest, both of which highlight the need to identify long-term trends in size of those structures, and understand the underlying mechanisms responsible for such trends. We evaluated trends in horn and antler size of trophy males (individuals exhibiting exceptionally large horns or antlers) recorded from 1900 to 2008 in Records of North American Big Game, which comprised >22,000 records among 25 trophy categories encompassing the geographic extent of species occupying North America. The long-term and broad-scale nature of those data neutralized localized effects of climate and population dynamics, making it possible to detect meaningful changes in size of horn-like structures among trophy males over the past century; however, ages of individual specimens were not available, which prevented us from evaluating age-class specific changes in size. Therefore, we used a weight-of-evidence approach based on differences among trophy categories in life-history characteristics, geographic distribution, morphological attributes, and harvest regimes to discriminate among competing hypotheses for explaining long-term trends in horn and antler size of trophy ungulates, and provide directions for future research. These hypotheses were young male age structure caused by intensive harvest of males (H1), genetic change as a result of selective male harvest (H2), a sociological effect (H3), effects of climate (H4), and habitat alteration (H5). Although the number of entries per decade has increased for most trophy categories, trends in size of horn-like structures were negative and significant for 11 of 17 antlered categories and 3 of 8 horned categories. Mean predicted declines during 1950–2008 were 1.87% and 0.68% for categories of trophy antlers and horns, respectively. Our results were not consistent with a sociological effect (H3), nutritional limitation imposed by climate (H4), or habitat alteration (H5) as potential explanations for long-term trends in size of trophies. In contrast, our results were consistent with a harvest-based explanation. Two of the 3 species that experienced the most conservative harvest regimes in North America (i.e., bighorn sheep [Ovis canadensis] and bison [Bison bison]) did not exhibit a significant, long-term trend in horn size. In addition, horn size of pronghorn (Antilocapra americana), which are capable of attaining peak horn size by 2–3 years of age, increased significantly over the past century. Both of those results provide support for the intensive-harvest hypothesis, which predicts that harvest of males has gradually shifted age structure towards younger, and thus smaller, males. The absence of a significant trend for mountain goats (Oreamnos americanus), which are difficult to accurately judge size of horns in the field, provided some support for the selective-harvest hypothesis. One other prediction that followed from the selective-harvest hypothesis was not supported; horned game were not more susceptible to reductions in size. A harvest-induced reduction in age structure can increase the number of males that are harvested prior to attaining peak horn or antler size, whereas genetic change imposed by selective harvest may be less likely to occur in free-ranging populations when other factors, such as age and nutrition, can override genetic potential for size. Long-term trends in the size of trophy horn-like structures provide the incentive to evaluate the appropriateness of the current harvest paradigm, wherein harvest is focused largely on males; although the lack of information on age of specimens prevented us from rigorously differentiating among causal mechanisms. Disentangling potential mechanisms underpinning long-term trends in horn and antler size is a daunting task, but one that is worthy of additional research focused on elucidating the relative influence of nutrition and effects (both demographic and genetic) of harvest. © 2013 The Wildlife Society.  相似文献   

5.
Across most of their native North American range, the horns of mountain sheep (Ovis spp.) males are getting smaller, a pattern attributed to selective hunting pressure. We measured the horns of 755 Dall's sheep males (Ovis dalli dalli) in the southern Mackenzie Mountains, Northwest Territories, between 2002 and 2017. For each male, we measured the circumference and length of each annulus for the right horn and calculated horn volume for each year. We examined changes in horn size in 4 different outfitter areas, using age at harvest as a covariate. Hunting pressure across years in the study area was consistently low, and this population did not experience the decline in horn size observed in several other mountain sheep populations in Canada. Over the 16-year period, the average horn volume of harvested males was stable and even increased in 1 outfitter area. Local management of Dall's sheep delivered independently by the guide outfitters in the Mackenzie Mountains appears to contribute to maintaining a population of males that has not been adversely affected by strong selective hunting pressure. The resilience of this management strategy may be challenged by environmental changes associated with rapid warming in northern mountain environments.  相似文献   

6.
Males of the horned beetle Onthophagus acuminatus Har. (Coleoptera: Scarabaeidae) exhibit horn length dimorphism due to a sigmoidal allometric relationship between horn length and body size: the steep slope of the allometry around the inflection of the sigmoid curve separates males into two groups; those larger than this inflection possess long horns, and those smaller than this inflection have short horns or lack horns. I examined the genetic basis of the allometric relationship between horn length and body size by selecting males that produced unusually long horns, and males that produced unusually short horns, for their respective body sizes. After seven generations of selection, lines selected for relatively long horns had significantly longer horn lengths for a given body size than lines selected for relatively short horns, indicating a heritable component to variation in the allometry. The sigmoidal shape of the allometry was not affected by this selection regime. Rather, selected lines differed in the position of the allometry along the body size axis. One consequence of lateral shifts in this allometric relationship was that the body size separating horned from hornless males (the point of inflection of the sigmoid curve) differed between selection lines: lines in which males were selected for relatively long horns began horn production at smaller body sizes than lines selected for relatively short horns. These results suggest that populations can evolve in response to selection on male horn length through modification of the growth relationship between horn length and body size.  相似文献   

7.
ABSTRACT In ungulates, big males with large weapons typically outcompete other males over access to estrous females. In many species, rapid early growth leads to large adult mass and weapon size. We compared males in one hunted and one protected population of Alpine chamois (Rupicapra rupicapra) to examine the relationship between horn length and body mass. We assessed whether early development and hunter selectivity affected age-specific patterns of body and horn size and whether sport hunting could be an artificial selection pressure favoring smaller horns. Adult horn length was mostly independent of body mass. For adult males, the coefficient of variation of horn length (0.06) was <50% of that for body mass (0.16), suggesting that horn length presents a lower potential for selection and may be less important for male mating success than is body mass. Surprisingly, early development did not affect adult mass because of apparent compensatory growth. We found few differences in body and horn size between hunted and protected populations, suggesting the absence of strong effects of hunting on male phenotype. If horn length has a limited role in male reproductive success, hunter selectivity for males with longer horns is unlikely to lead to an artificial selective pressure on horn size. These results imply that the potential evolutionary effects of selective hunting depend on how the characteristics selected by hunters affect individual reproductive success.  相似文献   

8.
ABSTRACT Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 2004–2007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n = 84), Global Positioning System (GPS) telemetry (n = 115), or both (n = 6). Aerial survey crews detected 77% and 79% of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied Horvitz-Thompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85% but ranged 0.75–0.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.  相似文献   

9.
Human harvests can select against phenotypes favoured by natural selection, and natural resource managers should evaluate possible artificial selection on wild populations. Because the required genetic data are extremely difficult to gather, however, managers typically rely on harvested animals to document temporal trends. It is usually unknown whether these data are unbiased. We explore our ability to detect a decline in horn size of bighorn sheep (Ovis canadensis) by comparing harvested males with all males in a population where evolutionary changes owing to trophy hunting were previously reported. Hunting records underestimated the temporal decline, partly because of an increasing proportion of rams that could not be harvested because their horns were smaller than the threshold set by hunting regulations. If harvests are selective, temporal trends measured from harvest records will underestimate the magnitude of changes in wild populations.  相似文献   

10.
Human harvests can unwittingly drive evolution on morphology and life history, and these selective effects may be detrimental to the management of natural resources. Although theory suggests that harvest refuges, as sources of unselected animals, could buffer the effects of human exploitation on wild populations, few studies have assessed their efficiency. We analyzed records from >7000 trophy bighorn rams (Ovis canadensis) harvested in Alberta, Canada, between 1974 and 2011 to investigate if the movement of rams from refuges toward harvested areas reduced the effects of selective harvesting on horn size through phenotypic rescue. Rams taken near refuges had horns on average about 3% longer than rams shot far from refuges and were slightly older, suggesting migration from refuges into hunted areas. Rams from areas adjacent to and far from harvest refuges, however, showed similar declines in horn length and increases in age at harvest over time, indicating a decreasing rate of horn growth. Our study suggests that the influx of rams from refuges is not sufficient to mitigate the selective effects of sheep trophy harvest. Instead, we suggest that selective hunting of highly mobile animals may affect the genetic structure of populations that spend part of the year inside protected areas.  相似文献   

11.
Sexual dimorphism, the difference between the sexes in secondary sexual characters, is in general driven by processes of sexual selection. The horn-headed cricket, Loxoblemmus doenitzi, exhibits sexual dimorphism in head shape. Males have flat heads and triangular horns on both sides of their heads, whereas females have rounded heads and no horns. We hypothesized that male horns have evolved due to intra-sexual selection, in which males use these horns as weapons in aggressive interactions. We tested two predictions of this hypothesis by conducting agonistic trials with field-caught males of L. doenitzi: (1) the horns should be used in agonistic interactions between males, and (2) the asymmetry in horn size or horn use may determine contest outcome. Horn length was significantly correlated with thorax length and hind femur length. During agonistic interactions, males aggressively used their horns by beating the opponent’s horns with their own or by poking the opponent’s body. However, logistic regression analysis revealed that neither horn length nor horn use were significant factors for contest outcome. Instead, body size was significant for determining contest outcome. We discuss possible scenarios for evolution of male horns in L. doenitzi.  相似文献   

12.
The recent availability of a genome‐wide SNP array for the goat genome dramatically increases the power to investigate aspects of genetic diversity and to conduct genome‐wide association studies in this important domestic species. We collected and analysed genotypes from 52 088 SNPs in Boer, Cashmere and Rangeland goats that had both polled and horned individuals. Principal components analysis revealed a clear genetic division between animals for each population, and model‐based clustering successfully detected evidence of admixture that matched aspects of their recorded history. For example, shared co‐ancestry was detected, suggesting Boer goats have been introgressed into the Rangeland population. Further, allele frequency data successfully tracked the altered genetic profile that has taken place after 40 years of breeding Australian Cashmere goats using the Rangeland animals as the founding population. Genome‐wide association mapping of the POLL locus revealed a strong signal on goat chromosome 1. The 769‐kb critical interval contained the polled intersex syndrome locus, confirming the genetic basis in non‐European animals is the same as identified previously in Saanen goats. Interestingly, analysis of the haplotypes carried by a small set of sex‐reversed animals, known to be associated with polledness, revealed some animals carried the wild‐type chromosome associated with the presence of horns. This suggests a more complex basis for the relationship between polledness and the intersex condition than initially thought while validating the application of the goat SNP50 BeadChip for fine‐mapping traits in goat.  相似文献   

13.
The expression of secondary sexual traits in females has often been attributed to a correlated response to selection on male traits. In rare cases, females have secondary sexual traits that are not homologous structures to secondary sexual traits in males and are thus less likely to have evolved in females because of correlated selection. In this study, we used the dung beetle Onthophagus sagittarius, a species with sex‐specific horns, to examine the environmental and quantitative genetic control of horn expression in males and females. Offspring subjected to different brood mass manipulations (dung addition/removal) were found to differ significantly in body size. Brood mass manipulation also had a significant effect on the length of male horns; however, female horn length was found to be relatively impervious to the treatment, showing stronger patterns of additive genetic variance than males. We found no correlations between horn expression in males and females. We therefore conclude that the horns of O. sagittarius females are unlikely to result from genetic correlations between males and females. Rather, our data suggest that they may be under independent genetic control.  相似文献   

14.
Males are predicted to compete for reproductive opportunities, with sexual selection driving the evolution of large body size and weaponry through the advantage they confer for access to females. Few studies have explored potential trade-offs of investment in secondary sexual traits between different components of fitness or tested for sexually antagonistic selection pressures. These factors may provide explanations for observed polymorphisms in both form and quality of secondary sexual traits. We report here an analysis of selection on horn phenotype in a feral population of Soay sheep (Ovis aries) on the island of Hirta, St. Kilda, Scotland. Soay sheep display a phenotypic polymorphism for horn type with males growing either normal or reduced (scurred) horns, and females growing either normal, scurred, or no (polled) horns; further variation in size exists within horn morphs. We show that horn phenotype and the size of the trait displayed is subject to different selection pressures in males and females, generating sexually antagonistic selection. Furthermore, there was evidence of a trade-off between breeding success and longevity in normal-horned males, with both the normal horn type and larger horn size being associated with greater annual breeding success but reduced longevity. Therefore, selection through lifetime breeding success was not found to act upon horn phenotype in males. In females, a negative association of annual breeding success within the normal-horned phenotype did not result in a significant difference in lifetime fitness when compared to scurred individuals, as no significant difference in longevity was found. However, increased horn size within this group was negatively associated with breeding success and longevity. Females without horns (polled) suffered reduced longevity and thus reduced lifetime breeding success relative the other horn morphs. Our results therefore suggest that trade-offs between different components of fitness and antagonistic selection between the sexes may maintain genetic variation for secondary sexual traits within a population.  相似文献   

15.
As a classical example of a sexually selected trait, the horns of male bovids offer a prime opportunity to identify predictors of the intensity of sexual selection. Here I use the comparative method to quantify sexual and natural selection pressures behind interspecific variation in horn length. I show that male horn length depends on factors proposed to affect the mean mate number per mating male, correlating positively with group size and negatively with male territoriality. This suggests that whereas group size increases the opportunity for sexual selection, territoriality reduces it because territorial males are unable to follow and monopolize female groups as effectively as males in nonterritorial species. Sexual body size dimorphism also correlates positively with group size and negatively with territoriality, corroborating these factors as predictors of the intensity of sexual selection on males. Female horn length was unaffected by the factors related to mating system, suggesting that this trait is mainly under natural selection. Using female horn length as a proxy for forces of natural selection revealed a negative effect on male horn length. Thus where natural selection favors female horns, possibly as effective weapons against predators, a similar selection pressure on males might prevent them from evolving too elaborate horns through sexual selection. There was no correlation found between horn length and latitude, thus providing no support for the hypothesis that horns have a thermoregulatory function.  相似文献   

16.
Secondary sexual traits (e.g., horns and antlers) have ecological and evolutionary importance and are of management interest for game species. Yet, how these traits respond to emerging threats like infectious disease remains underexplored. Infectious pneumonia threatens bighorn sheep (Ovis canadensis) populations across North America and we hypothesized it may also reduce horn growth in male sheep. We assess the effect of pneumonia on horn size in male bighorn sheep using 12 herd datasets from across the western United States that had horn growth and disease data. Disease resulted in 12–35% reduction in increment (yearly) length and 3–13% reduction in total horn length in exposed individuals. The disease effect was prolonged when pathogens continued to circulate in sheep populations. Further, disease likely delays the age at which horns reach ¾-curl and prevents achievement of full-curl. This is further evidenced with 6 of the 12 herds experiencing an increase in average age at harvest following die-off events.  相似文献   

17.
The development of male secondary sexual characters such as antlers or horns has substantial biological and socio‐economic importance because in many species these traits affect male fitness positively through sexual selection and negatively through trophy hunting. Both environmental conditions and selective hunting can affect horn growth but their relative importance remains unexplored. We first examined how a large‐scale climate index, the Pacific Decadal Oscillation (PDO), local weather and population density influenced both absolute and relative annual horn growth from birth to three years of male bighorn sheep Ovis canadensis over 42 years. We then examined the relative influence of environmental conditions and evolution mainly driven by trophy hunting on male horn length at three years of age. Horn growth was positively influenced by low population density and warm spring temperature, suggesting that ongoing climate change should lead to larger horns. Seasonal values of PDO were highly correlated. Horn growth increased with PDO in spring or summer at low density, but was weak at high density regardless of PDO. The interaction between population density and PDO in spring or summer accounted for a similar proportion of the observed annual variation in horn growth (32% or 37%) as did the additive effects of spring temperature and density (34%). When environmental conditions deteriorated, males allocated relatively more resources to summer mass gain than to horn growth, suggesting a conservative strategy favoring maintenance of condition over allocation to secondary sexual characters. Population density explained 27% of the variation in horn length, while evolutionary effects explained 9% of the variance. Thus, our study underlines the importance of both evolution and phenotypic plasticity on the development of a secondary sexual trait.  相似文献   

18.
We tested for cross‐species amplification of microsatellite loci located throughout the domestic sheep (Ovis aries) genome in two north American mountain ungulates (bighorn sheep, Ovis canadensis, and mountain goats, Oreamnos americanus). We identified 247 new polymorphic markers in bighorn sheep (≥ 3 alleles in one of two study populations) and 149 in mountain goats (≥ 2 alleles in a single study population) using 648 and 576 primer pairs, respectively. Our efforts increased the number of available polymorphic microsatellite markers to 327 for bighorn sheep and 180 for mountain goats. The average distance between successive polymorphic bighorn sheep and mountain goat markers inferred from the Australian domestic sheep genome linkage map (mean ± 1 SD) was 11.9 ± 9.2 and 15.8 ± 13.8 centimorgans, respectively. The development of genomic resources in these wildlife species enables future studies of the genetic architecture of trait variation.  相似文献   

19.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key “early warning signs” about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37‐year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate‐driven effects influence mountain goat populations, we developed an age‐structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70‐year time window (2015–2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., “thermoneutral”) summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%–86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate‐linked bottom‐up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.  相似文献   

20.
In sexually dimorphic ungulates, sexual selection favoring rapid horn growth in males may be counterbalanced by a decrease in longevity if horns are costly to produce and maintain. Alternatively, if early horn growth varied with individual quality, it may be positively correlated with longevity. We studied Alpine ibex Capra ibex in the Gran Paradiso National Park, Italy, to test these alternatives by comparing early horn growth and longevity of 383 males that died from natural causes. After accounting for age at death, total horn length after age 5 was positively correlated with horn growth from two to four years. Individuals with the fastest horn growth as young adults also had the longest horns later in life. Annual horn growth increments between two and six years of age were independent of longevity for ibex whose age at death ranged from 8 to 16 years. Our results suggest that growing long horns does not constrain longevity. Of the variability in horn length, 22% could be explained by individual heterogeneity, suggesting persistent differences in phenotypic quality among males. Research on unhunted populations of sexually dimorphic ungulates documents how natural mortality varies according to horn or antler size, and can help reduce the impact of sport hunting on natural processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号