共查询到16条相似文献,搜索用时 0 毫秒
1.
Tutku Aykanat Mikhail Ozerov Juha‐Pekka Vh Panu Orell Eero Niemel Jaakko Erkinaro Craig R. Primmer 《Journal of evolutionary biology》2019,32(4):343-355
Co‐inheritance in life‐history traits may result in unpredictable evolutionary trajectories if not accounted for in life‐history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life‐history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co‐inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8–3.5 90% CI) times higher for fish with the early‐maturing vgll3 genotype (EE) compared to fish with the late‐maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first‐time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life‐history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments. 相似文献
2.
Susan E. Johnston Panu Orell Victoria L. Pritchard Matthew P. Kent Sigbjørn Lien Eero Niemelä Jaakko Erkinaro Craig R. Primmer 《Molecular ecology》2014,23(14):3452-3468
Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade‐offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their ‘sea age’). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual‐based genome‐wide association studies (GWAS) and population‐based FST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome‐wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context. 相似文献
3.
Sugihiko Hoshizaki 《Entomological Science》2020,23(4):374-384
It has been widely assumed that the stepwise increase in the exoskeleton size of larval insects approximately follows a geometric progression from instar to instar, known as Dyar's Rule. However, it is not clear whether the per-instar increase in body size follows this rule. In insects, Dyar's Rule has been identified either by regressing the log-scaled size on the instar number (log-linear regression analysis) or by comparing the postmolt/premolt size ratio between instars (growth rate analysis). A previous study on the body mass of caterpillars showed the methodological pitfall that Dyar's Rule was statistically supported by log-linear regression analysis, but not at all by growth rates analysis. I considered this concern here by examining the per-stage growth rates of head and body sizes for larvae of the beetle Trypoxylus dichotomus using both methods and compared the resulting growth rates for body size within and between taxonomic orders. Dyar's Rule was statistically supported by the log-linear regression analysis but not by growth rate analysis for both the head and body sizes in T. dichotomus. The body size growth rate in T. dichotomus decreased as the instar progressed. This developmental pattern was also found in reported data for the other six scarabs, but not in data for Lepidoptera or Hymenoptera. These findings confirm that the per-stage growth rate of body size does not follow Dyar's Rule in a wide range of insects, and suggest that developmental change in the body size growth rate varies among insect groups. 相似文献
4.
Changes in size and age at maturity in a population of kokanee Oncorhynchus nerka during a period of declining growth conditions 总被引:1,自引:0,他引:1
M. C. Grover† 《Journal of fish biology》2005,66(1):122-134
Trends in size distributions and age at maturity of spawning kokanee Oncorhynchus nerka during a 5 year period of declining growth conditions at Bucks Lake, California, U.S.A. were consistent with the hypothesis that reductions in growth rates in successive cohorts induce a shift to an older age at maturity. This forestalls decreases in size at maturity during a transitional period characterized by an increasing proportion of individuals that delay maturation. During the course of the study, kokanee first began declining in size at maturity, and then shifted from a 3 year to a 4 year egg to adult cycle. Individuals that spawned during their fourth year (age 3 years) were significantly larger, on average, than members of their cohort that spawned during their third year (age 2 years). This difference was greatest when age 2 year adults were smallest. The shift to an older age at maturity prevented a steady decline in size at maturity, even though age‐specific size was steadily declining over time. Size at maturity, however, began to decline again once the transition to a 4 year cycle was complete. In addition, there was a general trend of decreasing length‐specific mass. The data indicate that there is a range of growth trajectories over which delayed maturity can prevent a temporal pattern of decreasing size at maturity as growth rates decline. 相似文献
5.
Dimensionless numbers and life history variation in Brown Trout 总被引:1,自引:0,他引:1
Leif Asbjørn Vøllestad Jan Henning L'Abée-Lund Harald Sægrov 《Evolutionary ecology》1993,7(2):207-218
Summary Dimensionless numbers, made up from components of life history as defined by growth, mortality and maturation, may provide fresh insights into life history evolution. Most studies have previously shown that these numbers are more or less constants within taxa. The variation between taxa may clarify the evolution of different life histories. We examine the variation in three dimensionless numbers using data from 29 populations of Brown TroutSalmo trutta from Norway, and find that the dimensionless numbers are not constants for the Brown Trout populations. We find that the relationship betweenK of the von Bertalanffy growth equation and the mortality rate (M) increased with increasing growth rate. Also, relative length at maturity (L
/L
inf) increased with increasing asymptotic length (L
inf). We suggest that more such data should be collected from a large number of species and taxonomic groups, to allow a more detailed assessment of why these dimensionless numbers appear to be constants in some taxa and not in others. 相似文献
6.
Tutku Aykanat Susan E. Johnston Panu Orell Eero Niemelä Jaakko Erkinaro Craig R. Primmer 《Molecular ecology》2015,24(20):5158-5174
Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high‐resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)‐based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine‐scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late‐maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence. 相似文献
7.
Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly 总被引:4,自引:1,他引:3
Karl Gotthard 《The Journal of animal ecology》2000,69(5):896-902
8.
The maturation pattern in the female European eel Anguilla anguilla was studied by investigating age and size patterns of silver eels in different aquatic environments in Sweden, covering limnic, brackish and marine waters. The results neither supported the hypothesis that there is a critical size or age when eels enter the silvery stage, nor that size and age at maturity are positively related. Age at maturity, however, was observed to be negatively related to growth rate in all localities, i.e. the female reproductive tactic apparently is to become sexually mature at the earliest possible opportunity. Furthermore, it was recognized that a significant amount of variation was due to habitat differences, since the female eel maturation pattern deviated systematically between sampling sites, as it did also when the effect of growth rate was eliminated. Thus, the ability of the female eel to adjust maturation to an optimal size and age can be questioned, because the panmictic nature of the eel means local adaptations are unlikely Growth rate dependent differences suggest that variations in maturation patterns between eel environments are linked more to the opportunity for nutrient accumulation than to other aspects of growth. 相似文献
9.
The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25–50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60–70 cm curved carapace length, (CCL) or 15–20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.Communicated by Ecological Editor P.F. Sale 相似文献
10.
Kyle S. Van Houtan Allen H. Andrews T. Todd Jones Shawn K. K. Murakawa Molly E. Hagemann 《Proceedings. Biological sciences / The Royal Society》2016,283(1822)
Some of the most basic questions of sea turtle life history are also the most elusive. Many uncertainties surround lifespan, growth rates, maturity and spatial structure, yet these are critical factors in assessing population status. Here we examine the keratinized hard tissues of the hawksbill (Eretmochelys imbricata) carapace and use bomb radiocarbon dating to estimate growth and maturity. Scutes have an established dietary record, yet the large keratin deposits of hawksbills evoke a reliable chronology. We sectioned, polished and imaged posterior marginal scutes from 36 individual hawksbills representing all life stages, several Pacific populations and spanning eight decades. We counted the apparent growth lines, microsampled along growth contours and calibrated Δ14C values to reference coral series. We fit von Bertalanffy growth function (VBGF) models to the results, producing a range of age estimates for each turtle. We find Hawaii hawksbills deposit eight growth lines annually (range 5–14), with model ensembles producing a somatic growth parameter (k) of 0.13 (range 0.1–0.2) and first breeding at 29 years (range 23–36). Recent bomb radiocarbon values also suggest declining trophic status. Together, our results may reflect long-term changes in the benthic community structure of Hawaii reefs, and possibly shed light on the critical population status for Hawaii hawksbills. 相似文献
11.
Sugihiko Hoshizaki 《Entomological Science》2019,22(4):373-380
Body size often varies among conspecific neonates. As larger adults generally have higher fitness than smaller conspecifics, it is adaptive for smaller neonates to subsequently gain relatively more size increments during larval development (catch‐up growth). Although catch‐up growth has been suggested in insects, inappropriate methods have been used to examine the size dependence of growth increments. Therefore, it remains unclear to what extent catch‐up growth is common among insects. The present study examined the size dependence of growth increments among larvae of Trypoxylus dichotomus using reduced major axis regression of final to initial body masses. Catch‐up growth was found consistently for larval instars. Furthermore, simulations of the size increments revealed that not only sexual divergence of the mean size, but also catch‐up growth within sexes plays a role in the development of sexual divergence in the body size distribution of T. dichotomus. The significance of catch‐up growth in body size evolution was discussed. 相似文献
12.
Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis 总被引:3,自引:0,他引:3
In ectotherms, temperature induces similar developmental and evolutionary responses in body size, with larger individuals occurring or evolving in low temperature environments. Based on the occasional occurrence of opposite size clines, showing a decline in body size with increasing latitude, an interaction between generation time and growing season length was suggested to account for the patterns found. Accordingly, multivoltine species with short generation times should gain high compound interest benefits from reproducing early at high temperatures, indicating potential for extra generations, even at the expense of being smaller. This should not apply for obligatorily monovoltine populations. We explicitly test the prediction that monovoltine populations (no compound interest) should be selected for large body size to maximise adult fitness, and therefore size at maturity should respond only weakly to temperature. In two monovoltine populations (an Alpine and a Western German one) of the butterfly Lycaena hippothoe, increasing temperatures had no significant effect on pupal weight and caused a slight decrease in adult weight only. In contrast, two closely related, yet potentially multivoltine Lycaena populations showed a greater weight loss at increasing temperature (in protandrous males, but not in females) and smaller adult sizes throughout. Thus, the results do support our predictions indicating that the compound interest hypothesis may yield causal explanations for the relationship between temperature and insect size at maturity. At all temperatures, the alpine population had higher growth rates and concomitantly shorter development times (not accompanied by a reduction in size) than the other, presumably indicating local adaptations to different climates. 相似文献
13.
Stine S. Markussen Ivar Herfindal Anne Loison Erling J. Solberg Hallvard Haanes Knut H. Red Morten Heim Bernt‐Erik Sther 《Oikos》2019,128(3):328-337
Age at first reproduction is an important determinant of individual variation in reproductive success in ungulates, but few studies have examined its relationship with later fitness‐related traits in males. We used a long‐term individual based study of a harvested moose population to quantify the individual reproductive performance and survival of males, as well as to examine the determinants of age at first reproduction and consequences of age at first reproduction on lifetime breeding success. The probability that a male successfully reproduced at the age of two was negatively related to the mean age of adult males in the population, but the relationship weakened with increasing population size. Large antlers and large body mass relative to other males in the population increased the number of calves sired at their first successful mating season. In addition, those that successfully reproduced as two year‐olds were more likely to sire calves the next year, making them more productive at a given age compared to those that first reproduced at the age of three or older. We emphasize the importance for males to start reproducing as soon as possible in a harvested population to gain lifetime fitness benefits, as surviving the hunt is a major determinant of reproductive success in this population. We found no costs of early reproduction in males, hence leading to high individual heterogeneity in male reproductive performance. The apparent lack of reproductive costs could partly be explained by the age distribution in the population, individual variation in early‐life body mass and antler size, and differences in probabilities of being hunted of successful and unsuccessful males. 相似文献
14.
Biological invasions are inherently demographic processes, but trait differences between native and introduced genotypes are rarely linked to population growth rates. Native European Centaurea stoebe occurs as two cytotypes with different life histories (monocarpic diploids, polycarpic tetraploids); however, only tetraploids have been found in its introduced range in North America. In a common garden experiment using artificial populations, we compared the demographic performance of the three geo-cytotypes in the presence and absence of a specialist herbivore using periodic matrix models. We found no difference in population growth rate between the two European cytotypes and no significant effects of herbivory in all geo-cytotypes. However, there was a pronounced increase in population growth rate for North American compared with European tetraploids due to increased seed production and juvenile establishment. These results suggest that genetic drift or rapid evolution, rather than pre-adaptation through polyploidy may explain the invasion success of tetraploids. 相似文献
15.
Juvenile and adult scale characteristics were used to compare two juvenile groups of Atlantic salmon in a large subarctic river in northern Scandinavia: individuals that have migrated from the main stem into small tributaries and those which remain in the main stem. Body size and scale measurements indicated enhanced growth in migratory parr as compared to their resident main stem counterparts. Analysis of adult salmon scale characteristics using maximum likelihood estimators revealed that 20% of the adults had been in the tributaries before the end of their second year of life, and more than 30% more had moved into the tributaries in the third year. Tributary fish matured at a smaller size and younger age (one-sea-winter salmon) than those rearing in the main stem which included a higher proportion of multi-sea-winter salmon. In addition, when smolt ages and ages at maturity were compared, older female smolts often resulted in smaller spawners and younger smolts, larger spawners. Small female spawners were more likely to survive to become repeat spawners. 相似文献
16.
Food availability as a major driver in the evolution of life‐history strategies of sibling species 下载免费PDF全文
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species. 相似文献