首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed-phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification state. A total of 715 intact proteins were detected, and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post-translational modifications were assigned for approximately 10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C-, 15N-depleted media under aerobic and sub-oxic conditions. The strategy can be readily applied for measuring differential protein abundances and provides a platform for high-throughput selection of biologically relevant targets for further characterization.  相似文献   

2.
Here we present a comprehensive method for proteome analysis that integrates both intact protein measurement ("top-down") and proteolytic fragment characterization ("bottom-up") mass spectrometric approaches, capitalizing on the unique capabilities of each method. This integrated approach was applied in a preliminary proteomic analysis of Shewanella oneidensis, a metal-reducing microbe of potential importance to the field of bioremediation. Cellular lysates were examined directly by the "bottom-up" approach as well as fractionated via anion-exchange liquid chromatography for integrated studies. A portion of each fraction was proteolytically digested, with the resulting peptides characterized by on-line liquid chromatography/tandem mass spectrometry. The remaining portion of each fraction containing the intact proteins was examined by high-resolution Fourier transform mass spectrometry. This "top-down" technique provided direct measurement of the molecular masses for the intact proteins and thereby enabled confirmation of post-translational modifications, signal peptides, and gene start sites of proteins detected in the "bottom-up" experiments. A total of 868 proteins from virtually every functional class, including hypotheticals, were identified from this organism.  相似文献   

3.
We performed here MS-based cell surface proteome profiling of HCT-116 cells by two distinct methods based on biotin labeling and glycoprotein capturing. In total, 742 biotinylated and 219 glycosylated proteins were identified by the biotin labeling and glycoprotein capturing, of which 224 and 138 proteins known to be located on plasma membrane were included, respectively, according to ingenuity pathway analysis. Although 104 plasma membrane proteins were identified by both methods, the rest of 154 were identified only by one. Almost all the identified plasma membrane proteins possessed consensus N-glycosylation sites, and proteins having various numbers of glycosylation sites were identified by both methods. Thus, the discrepancies of the identified proteins obtained from those two methods might not be only due to the number of glycosylation sites, but also to the expression and/or glycosylation level of the cell surface proteins. We also identified 312 N-glycosylated proteins from xenograft samples by glycoprotein capturing of which 135 were known as plasma membrane proteins. Although a number of highly-expressed plasma membrane proteins were common between culture and xenograft cells, some proteins showed culture- or xenograft-specific expression, suggesting that those proteins might contribute to grow in different environment.  相似文献   

4.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   

5.
We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches.  相似文献   

6.
7.
The ability to identify and quantitate integral membrane proteins is an analytical challenge for mass spectrometry-based proteomics. The use of surfactants to solubilize and facilitate derivatization of these proteins can suppress peptide ionization and interfere with chromatographic separations during microcapillary reversed-phase liquid chromatography-electrospray-tandem mass spectrometry. To circumvent the use of surfactants and increase proteome coverage, an affinity labeling method has been developed to target highly hydrophobic integral membrane proteins using organic-assisted extraction and solubilization followed by cysteinyl-specific labeling using biotinylation reagents. As demonstrated on the membrane subproteome of Deinococcus radiodurans, specific and quantitative labeling of integral membrane proteins was achieved using a 60% methanol-aqueous buffer system and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine as the cysteinyl-alkylating reagent. From a total of 220 unique Cys-labeled peptides, 89 proteins were identified, of which 40 were integral membrane proteins containing from one to nine mapped transmembrane domains with a maximum positive GRAVY of 1.08. The protocol described can be used with other stable isotope labeling reagents (e.g., ICAT) to enable comparative measurements to be made on differentially expressed hydrophobic membrane proteins from various organisms (e.g., pathogenic bacteria) and cell types and provide a viable method for comparative proteome-wide analyses.  相似文献   

8.
There is currently limited data available pertaining to the global characterization of the cell surface proteome. We have implemented a strategy for the comprehensive profiling and identification of surface membrane proteins. This strategy has been applied to cancer cells, including the SH-SY5Y neuroblastoma, the A549 lung adenocarcinoma, the LoVo colon adenocarcinoma, and the Sup-B15 acute lymphoblastic leukemia (B cell) cell lines and ovarian tumor cells. Surface membrane proteins of viable, intact cells were subjected to biotinylation then affinity-captured and purified on monomeric avidin columns. The biotinylated proteins were eluted from the monomeric avidin columns as intact proteins and were subsequently separated by two-dimensional PAGE, transferred to polyvinylidene difluoride membranes, and visualized by hybridization with streptavidin-horseradish peroxidase. Highly reproducible, but distinct, two-dimensional patterns consisting of several hundred biotinylated proteins were obtained for the different cell populations analyzed. Identification of a subset of biotinylated proteins among the different cell populations analyzed using matrix-assisted laser desorption ionization and tandem mass spectrometry uncovered proteins with a restricted expression pattern in some cell line(s), such as CD87 and the activin receptor type IIB. We also identified more widely expressed proteins, such as CD98, and a sushi repeat-containing protein, a member of the selectin family. Remarkably, a set of proteins identified as chaperone proteins were found to be highly abundant on the cell surface, including GRP78, GRP75, HSP70, HSP60, HSP54, HSP27, and protein disulfide isomerase. Comprehensive profiling of the cell surface proteome provides an effective approach for the identification of commonly occurring proteins as well as proteins with restricted expression patterns in this compartment.  相似文献   

9.
Tian R  Li L  Tang W  Liu H  Ye M  Zhao ZK  Zou H 《Proteomics》2008,8(15):3094-3104
A chemical proteomic approach was developed for profiling the noncovalent interactome of isoprenoid chain in the yeast proteome. A chemical probe that harbors a biotin moiety and a photoreactive benzophenone group linked to the terminal of geranyl group was synthesized. Photoaffinity labeling was performed by incubating the Saccharomyces cerevisiae proteome and the probe under 365 nm UV light. Thirty proteins were identified by immobilized NeutraAvidin enrichment, on-bead digestion, online 2-D nano-LC/MS/MS identification and semi-quantitative proteomic analysis. As noted by Gene Ontology annotation, the identified proteins demonstrate a wide range of catalytic activity in several biological processes, especially in metabolism and biosynthesis. Further data analysis shows that hydrophobic binding of the synthetic probe is potentially the major interaction force leading to covalent labeling. These results argue that intracellular allosteric interactions conferred by the isoprenoid chain of the corresponding chemical structures may be widespread at an interactomic level.  相似文献   

10.
11.
Zhang ZJ  Peck SC 《Proteomics》2011,11(9):1780-1788
The plasma membrane (PM) serves as the point of contact between cells and the outside environment. As such, changes in the PM proteome are an important component of understanding cellular responses to a diverse array of stimuli. However, intricate sample handling to enrich PM proteomes by traditional methods is both technically challenging and time consuming. Here, we describe a simplified method for decreasing the representation of other membrane-containing organelles such as the endoplasmic reticulum, plastids and mitochondria from crude microsomal membrane isolations. The decrease in other organellar proteomes results in an increase in both the total number of PM proteins and the number of spectra identified from these proteins representing the PM proteome. Therefore, this strategy represents a simple and rapid method for enriching PM proteins from Arabidopsis cell cultures for proteomic analyses.  相似文献   

12.
The study of Saccharomyces cerevisiae cell surface proteins was performed because of their important role in cell wall biogenesis and in the physiology of the yeast. Two different proteomic approaches were carried out. First, proteins loosely associated or S–S linked to structural wall components were released by treatment of whole intact cells with dithiothreitol, separated by 2D-PAGE and identified by mass spectrometry. Second, cell surface-exposed proteins (surfome) were digested with trypsin and DTT from whole intact cells, and analyzed by LC–MS/MS. Ninety-nine different proteins were identified: 67 with DTT treatment and 52 with DTT and trypsin digestion. These proteins were classified in different cellular processes: control of cell wall organization, cell rescue, defence, and virulence, protein fate, protein synthesis and metabolism. Most of the proteins have already been reported as present on the cell surface showing that the yeast cell surface is composed not only by typical but also by atypical cell wall proteins. “Bona fide” cell wall proteins were identified by both protocols but a higher number with the non-gel strategy. However, only 20% of the proteins identified were common to both protocols, thus, for a complete knowledge of the cell surface proteome, several strategies have to be used.  相似文献   

13.
Identification of glycosylated proteins, especially those in the plasma membrane, has the potential of defining diagnostic biomarkers and therapeutic targets as well as increasing our understanding of changes occurring in the glycoproteome during normal differentiation and disease processes. Although many cellular proteins are glycosylated they are rarely identified by mass spectrometric analysis (e.g. shotgun proteomics) of total cell lysates. Therefore, methods that specifically target glycoproteins are necessary to facilitate their isolation from total cell lysates prior to their identification by mass spectrometry-based analysis. To enrich for plasma membrane glycoproteins the methods must selectively target characteristics associated with proteins within this compartment. We demonstrate that the application of two methods, one that uses periodate to label glycoproteins of intact cells and a hydrazide resin to capture the labeled glycoproteins and another that targets glycoproteins with sialic acid residues using lectin affinity chromatography, in conjunction with liquid chromatography-tandem mass spectrometry is effective for plasma membrane glycoprotein identification. We demonstrate that this combination of methods dramatically increases coverage of the plasma membrane proteome (more than one-half of the membrane glycoproteins were identified by the two methods uniquely) and also results in the identification of a large number of secreted glycoproteins. Our approach avoids the need for subcellular fractionation and utilizes a simple detergent lysis step that effectively solubilizes membrane glycoproteins. The plasma membrane localization of a subset of proteins identified was validated, and the dynamics of their expression in HeLa cells was evaluated during the cell cycle. Results obtained from the cell cycle studies demonstrate that plasma membrane protein expression can change up to 4-fold as cells transit the cell cycle and demonstrate the need to consider such changes when carrying out quantitative proteomics comparison of cell lines.  相似文献   

14.
One of the challenges associated with large-scale proteome analysis using tandem mass spectrometry (MS/MS) and automated database searching is to reduce the number of false positive identifications without sacrificing the number of true positives found. In this work, a systematic investigation of the effect of 2MEGA labeling (N-terminal dimethylation after lysine guanidination) on the proteome analysis of a membrane fraction of an Escherichia coli cell extract by 2-dimensional liquid chromatography MS/MS is presented. By a large-scale comparison of MS/MS spectra of native peptides with those from the 2MEGA-labeled peptides, the labeled peptides were found to undergo facile fragmentation with enhanced a1 or a1-related (a(1)-17 and a(1)-45) ions derived from all N-terminal amino acids in the MS/MS spectra; these ions are usually difficult to detect in the MS/MS spectra of nonderivatized peptides. The 2MEGA labeling alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI and ESI MS experiments. 2MEGA labeling was found not only to increase the number of peptides and proteins identified but also to generate enhanced a1 or a1-related ions as a constraint to reduce the number of false positive identifications. In total, 640 proteins were identified from the E. coli membrane fraction, with each protein identified based on peptide mass and sequence match of one or more peptides using MASCOT database search algorithm from the MS/MS spectra generated by a quadrupole time-of-flight mass spectrometer. Among them, the subcellular locations of 336 proteins are presently known, including 258 membrane and membrane-associated proteins (76.8%). Among the classified proteins, there was a dramatic increase in the total number of integral membrane proteins identified in the 2MEGA-labeled sample (153 proteins) versus the unlabeled sample (77 proteins).  相似文献   

15.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

16.
Mi W  Jia W  Zheng Z  Wang J  Cai Y  Ying W  Qian X 《Glycoconjugate journal》2012,29(5-6):411-424
Cell surface glycoproteins are one of the most frequently observed phenomena correlated with malignant growth. Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. The majority of hepatocellular carcinoma cell surface proteins are modified by glycosylation in the process of tumor invasion and metastasis. Therefore, characterization of cell surface glycoproteins can provide important information for diagnosis and treatment of liver cancer, and also represent a promising source of potential diagnostic biomarkers and therapeutic targets for hepatocellular carcinoma. However, cell surface glycoproteins of HCC have been seldom identified by proteomics approaches because of their hydrophobic nature, poor solubility, and low abundance. The recently developed cell surface-capturing (CSC) technique was an approach specifically targeted at membrane glycoproteins involving the affinity capture of membrane glycoproteins using glycan biotinylation labeling on intact cell surfaces. To characterize the cell surface glycoproteome and probe the mechanism of tumor invasion and metastasis of HCC, we have modified and evaluated the cell surface-capturing strategy, and applied it for surface glycoproteomic analysis of hepatocellular carcinoma cells. In total, 119 glycosylation sites on 116 unique glycopeptides were identified, corresponding to 79 different protein species. Of these, 65 (54.6?%) new predicted glycosylation sites were identified that had not previously been determined experimentally. Among the identified glycoproteins, 82?% were classified as membrane proteins by a database search, 68?% had transmembrane domains (TMDs), and 24?% were predicted to contain 2-13 TMDs. Moreover, a total of 26 CD antigens with 50 glycopeptides were detected in the membrane glycoproteins of hepatocellular carcinoma cells, comprising 43?% of the total glycopeptides identified. Many of these identified glycoproteins are associated with cancer such as CD44, CD147 and EGFR. This is a systematic characterization of cell surface glycoproteins of HCC. The membrane glycoproteins identified in this study provide very useful information for probing the mechanism of liver cancer invasion and metastasis.  相似文献   

17.
To investigate the dynamic cellular response to a condition change, selective labeling of the nascent proteome is necessary. Here, we report a method combining click chemistry protein labeling with 2D DIGE. To test the relevance of the method, we compared nascent proteomes of actively growing bacterial cells with that of cells exposed to protein synthesis inhibitor, erythromycin. Cells were incubated with methionine analog, homopropargyl glycin, and their nascent proteome was selectively labeled with monosulfonated neutral Cy3 and Cy5 azides specially synthesized for this purpose. Following fluorescent labeling, the protein samples were mixed and subjected to standard 2D DIGE separation. The method allowed us to reveal a dramatic reduction of newly synthesized proteins upon erythromycin treatment, while the total proteome was not significantly affected. Additionally, several proteins, whose synthesis was resistant to erythromycin, were identified.  相似文献   

18.
We describe the application of LC-MS without the use of stable isotope labeling for differential quantitative proteomic analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and suboxic conditions. LC-MS/MS was used to initially identify peptide sequences, and LC-FTICR was used to confirm these identifications as well as measure relative peptide abundances. 2343 peptides covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as statistical analysis of microarrays, whereas another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis was transitioned from aerobic to suboxic conditions.  相似文献   

19.
Cell surface polypeptides of mouse pachytene spermatocytes and round spermatids (steps 1–8) have been iodinated using 1,2,3,6,tetracholoro-3α, 6α-diphenylglycouril (IODOGEN). Labeled proteins have been assayed using two-dimensional polyacrylamide electrophoresis and radioautography. Purified plasma membranes, prepared from both spermatocytes and spermatids after the iodination of intact cells, exhibit 25–30 polypeptides which label reproducibly. No significant qualitative differences are noted in the labeled polypeptide map obtained from each of the purified cell types. Iodinated proteins range in molecular weight from greater than 100k daltons to approximately 40k daltons. The isoelectric points of labeled constituents range from pI 5.7 to 7.2. Three polypeptides represent the major iodinated species: p 94/5.8, p 75/5.9, and p 53/7.1. Comparison with total plasma membrane constituents assayed using Coomassie brilliant blue indicates that many of the radioactively labeled proteins are not present in quantities sufficient to allow ready detection without isotopic techniques. As a result, many of the proteins identified autoradiographically represent newly described surface components of mouse pachytene spermatocytes and round spermatids. The preparation of purified plasma membrane fractions prior to electrophoresis ensures that all iodinated species are in fact cell surface components. Furthermore, experiments designed to assess the vectorial nature of the IODOGEN-catalyzed labeling procedure suggest that most, if not all, of the iodinated species are exposed on the external side of the cell plasma membrane. Therefore, these studies have (1) identified hitherto unrecognized plasma membrane components of mouse pachytene spermatocytes and round spermatids and (2) provided the first available biochemical data concerning the molecular orientation of particular proteins in the surface membranes of developing mouse spermatogenic cells.  相似文献   

20.
Proteins exposed on the outer surface of the outer membrane of Salmonella typhimurium were identified by reacting intact cells with a covalent labeling reagent. Since the outer membrane permitted the free diffusion of small hydrophilic molecules, we used a macromolecular reagent, CNBr-activated dextran, as the non-penetrating labeling agent. We also used a mutant producing a lipopolysaccharide with a very short (i.e. hexasaccharide) carbohydrate chain, in order to avoid steric hindrance by the carbohydrates on membrane surface. Results showed that out of the four "major" proteins of molecular weight around 35 000, three were exposed, and that at least six other proteins were also exposed on cell surface. Only two or three outer membrane proteins consistently did not react with the reagent in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号