首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shark Bay, Western Australia is a World Heritage area with extensive microbial mats and stromatolites. Microbial communities that comprise these mats have developed a range of mitigation strategies against changing levels of photosynthetically active and ultraviolet radiation, including the ability to biosynthesise the UV-absorbing natural products scytonemin and mycosporine-like amino acids (MAAs). To this end, the distribution of photoprotective pigments within Shark Bay microbial mats was delineated in the present study. This involved amplicon sequencing of bacterial 16S rDNA from communities at the surface and subsurface in three distinct mat types (smooth, pustular and tufted), and correlating this data with the chemical and molecular distribution of scytonemin and MAAs. Employing UV spectroscopy and MS/MS fragmentation, mycosporine-glycine, asterina and an unknown MAA were identified based on typical fragmentation patterns. Marker genes for scytonemin and MAA production (scyC and mysC) were amplified from microbial mat DNA and placed into phylogenetic context against a broad screen throughout 363 cyanobacterial genomes. Results indicate that occurrence of UV screening compounds is associated with the upper layer of Shark Bay microbial mats, and the occurrence of scytonemin is closely dependent on the abundance of cyanobacteria.  相似文献   

2.
Thrombolites are unlaminated carbonate build‐ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1–2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as ‘button mats’, produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite‐specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.  相似文献   

3.
Variations in morphology, fatty acids, pigments and cyanobacterial community composition were studied in microbial mats across intertidal flats of the arid Arabian Gulf coast. These mats experience combined extreme conditions of salinity, temperature, UV radiation and desiccation depending on their tidal position. Different mat forms were observed depending on the topology of the coast and location. The mats contained 63 fatty acids in different proportions. The increased amounts of unsaturated fatty acids (12–39%) and the trans/cis ratio (0.6–1.6%) of the cyanobacterial fatty acid n- 18:1ω9 in the higher tidal mats suggested an adaptation of the mat microorganisms to environmental stress. Chlorophyll a concentrations suggested lower cyanobacterial abundance in the higher than in the lower intertidal mats. Scytonemin concentrations were dependent on the increase in solar irradiation, salinity and desiccation. The mats showed richness in cyanobacterial species, with Microcoleus chthonoplastes and Lyngbya aestuarii morphotypes as the dominant cyanobacteria. Denaturing gradient gel electrophoresis patterns suggested shifts in the cyanobacterial community dependent on drainage efficiency and salinity from lower to higher tidal zones. We conclude that the topology of the coast and the variable extreme environmental conditions across the tidal flat determine the distribution of microbial mats as well as the presence or absence of different microorganisms.  相似文献   

4.
Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities.  相似文献   

5.
Disturbance and recovery influence microbial community structure and ecosystem functions in most natural environments. This study from a hypersaline Bahamian lagoon details the response of a benthic cyanobacterial mat to disturbance by Hurricane Frances, a category-4 storm. Clone libraries of cyanobacterial small subunit r-RNA genes and nitrogenase genes revealed significant shifts in cyanobacterial and diazotroph community composition following the hurricane. Post-hurricane clone libraries were dominated by sequences that had been rare in pre-hurricane communities. In spite of this dominance shift, re-colonizing mat communities performed nitrogen fixation and photosynthesis at rates within the normal range of variation measured in the mat at similar salinities. There was a tendency for nitrogen fixation rates from mats re-colonizing sites with hurricane-related sand deposition to be higher than those from mats re-colonizing sites without significant sand deposition. This suggests that the altered communities responded to a carbon : nitrogen imbalance that was particularly pronounced in areas subjected to disturbance by sand burial. The post-hurricane dominance of organisms that had been previously rare suggests that pre-hurricane diversity and functional redundancy contributed to the rapid recovery of ecosystem function in the post-disturbance environment.  相似文献   

6.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

7.
The community structure and physiological characteristics of three microbial mat communities in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) were compared. One of the mats was located at the edge of a stream and was dominated by diatoms (with a thin basal layer of oscillatorian cyanobacteria), whereas the other two mats, located over moist soil and the bottom of a pond, respectively, were dominated by cyanobacteria throughout their vertical profiles. The predominant xanthophyll was fucoxanthin in the stream mat and myxoxanthophyll in the cyanobacteria-dominated mats. The sheath pigment scytonemin was absent in the stream mat but present in the soil and pond mats. The stream mat showed significantly lower delta13C and higher delta15N values than the other two mats. Consistent with the delta15N values, N2 fixation was negligible in the stream mat. The soil mat was the physiologically most active community. It showed rates of photosynthesis three times higher than in the other mats, and had the highest rates of ammonium uptake, nitrate uptake and N2 fixation. These observations underscore the taxonomic and physiological diversity of microbial mat communities in the maritime Antarctic region.  相似文献   

8.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

9.
We recently published a new method based on determining cyanobacterial biomass by confocal laser scanning microscopy image analysis (CLSM-IA) (Solé et al., Ultramicrosc 107:669–673, 2007). CLSM-IA allows biomass calculation for microorganisms of a small size, since the limit of the technique’s resolution is that generated by a voxel, the smallest unit of a three-dimensional digital image, equivalent to 1.183 × 10−3 mgC/cm3 of sediment. This method is especially suitable for the quantitative analysis of a large number of CLSM images generated from benthic sediments in which complex populations of cyanobacteria are abundant, such as microbial mats. In order to validate the new CLSM approach, mats with varying structural characteristics were studied. We have grouped them into three types: Microcoleus mats (laminated), sandy mats (nonlaminated and composed of well-sorted quartz sands), and oil-polluted mats. In this work, we applied CLSM-IA in natural [the Ebro delta and Sant Jordi colony (Spain), Salins-de-Giraud and Etang de Berre (France), and Orkney Islands (Scotland)] and artificial [mesocosms (Israel)] microbial mats. A total of 4,103 confocal images were obtained in order to determine total and individual cyanobacteria biomass profiles, at microscale level. The data presented in this paper show the efficacy of the method, as it can be applied to highly diverse mat samples.  相似文献   

10.
Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples.  相似文献   

11.
Benthic microbial mat communities were sampled from 20 lakes, ponds and streams of the McMurdo Sound region, Antarctica. At least five distinct assemblages could be differentiated by their cyanobacterial species composition, pigment content and vertical structure. The most widely occurring freshwater communities were dominated by thin-trichome (0·5–3 µm) oscillatoriacean species that formed benthic films up to several millimetres thick. ‘Lift-off mats’ produced mucilaginous mats 1–5 cm thick at the surface and edge of certain ponds. Another group of oscillatoriacean communities was characteristic of hypersaline pond environments; these communities were dominated by species with thicker trichomes such as Oscillatoria priestleyi. Black mucilaginous layers of Nostoc commune were widely distributed in aquatic and semi-aquatic habitats. Dark brown sheath pigmentation was also characteristic of less cohesive mats and crusts dominated by Pleurocapsa, Gloeocapsa and Calothrix. High performance liquid chromatography analysis of the lipophilic pigments showed that the upper region of most of the Antarctic mats was enriched in sheath pigments (scytonemin) and/or certain carotenoids such as myxoxanthophyll and canthaxanthin. Most of the chlorophyll a (Chla), as well as phycocyanin, β-carotene and echinenone, was located in the lower strata of the mat profiles. In many of these communities most of the photosynthetic biomass occurred in a ‘deep Chla maximum’ that was well protected from short-wavelength radiation by the surface layer of light-screening pigments.  相似文献   

12.
Structure and development of a benthic marine microbial mat   总被引:9,自引:0,他引:9  
Abstract Vertically stratified microbial communities of phototrophic bacteria in the upper intertidal zones of the North Sea island of Mellum were investigated. Growth and population dynamics of the cyanobacterial mat were followed over three successive years. It was concluded that the initial colonization of the sandy sediments was by the cyanobacterium Oscillatoria . In well-established mats, however, the dominant organism was Microcoleus chthonoplastes . The observed succession of cyanobacteria during mat development is correlated with nitrogen fixation. Nitrogen fixation is necessary in this low-nutrient environment to ensure colonization by mat-constructing cyanobacteria. Under certain conditions, a red layer of purple sulfur bacteria developed underneath the cyanobacterial mat in which Chromatium and Thiocapsa spp. dominated, but Thiopedia and Ectothiorhodospira spp. have also been observed. Measurements of light penetrating the cyanobacterial mat indicated that sufficient light is available for the photosynthetic growth of purple sulfur bacteria. Profiles of oxygen, sulfide and redox potential within the microbial mat were measured using microelectrodes. Maximum oxygen concentrations, measured at a depth of 0.7 mm, reached levels more than twice the normal air saturation. Dissolved sulfide was not detected by the microelectrodes. Determination of acid-distilled sulfide, however, revealed appreciable amounts of bound sulfide in the mat. Redox profiles measured in the mat led to the conclusion that the upper 10 mm of the sedimentary sequence is in a relatively oxidized state.  相似文献   

13.
Cyanobacterial mat communities were collected in the mangrove forest bordering the Grand Cul de Sac Marin, Guadeloupe, French West Indies, which supports a community of nitrogen fixing cyanobacterial mats established on the trunk and branches of black mangrove ( Avicennia germinans L.). This study presents results that are focused on the mat community and the physiological and morphological adaptations to UV radiation. The dominant surface species of the mat, Nostoc cf commune Vaucher and Scytonema sp., possessed the UV-shielding pigment scytonemin. Mats grown on medium D agar without nitrogen under photosynthetically active radiation (PAR) only, rapidly became disorganized compared with those exposed to PAR + UV-A (320– 400 nm) + UV-B (280–320 nm) irradiation. Concurrent with disorganization, acetylene reduction activity (ARA = one third of N2 reduction) was severely reduced, whereas mats irradiated with PAR + UV-A + UV-B maintained high ARA activity. Mats incubated for 27 days under PAR + UV-A + UV-B then exposed to PAR only exhibited a 68% stimulation of ARA, whereas ARA values were 33% inhibited in mats incubated with PAR only and then exposed to PAR + UV-A + UV-B. This favorable equilibrium was facilitated by the mats' three-dimensional structure in which the most UV-resistant species, N. commune , covers the surface with UV-sensitive species below this protective covering. The UV stressor was essential for the maintenance of mat structure and ARA.  相似文献   

14.
Thrombolites are unlaminated carbonate deposits formed by the metabolic activities of microbial mats and can serve as potential models for understanding the molecular mechanisms underlying the formation of lithifying communities. To assess the metabolic complexity of these ecosystems, high throughput DNA sequencing of a thrombolitic mat metagenome was coupled with phenotypic microarray analysis. Functional protein analysis of the thrombolite community metagenome delineated several of the major metabolic pathways that influence carbonate mineralization including cyanobacterial photosynthesis, sulfate reduction, sulfide oxidation, and aerobic heterotrophy. Spatial profiling of metabolite utilization within the thrombolite-forming microbial mats suggested that the top 5 mm contained a more metabolically diverse and active community than the deeper within the mat. This study provides evidence that despite the lack of mineral layering within the clotted thrombolite structure there is a vertical gradient of metabolic activity within the thrombolitic mat community. This metagenomic profiling also serves as a foundation for examining the active role individual functional groups of microbes play in coordinating metabolisms that lead to mineralization.  相似文献   

15.
Using a polyphasic approach that included microscopy, cultivation and 16S rRNA-based cultivation-independent molecular fingerprinting, we compared the cyanobacterial composition of Solar Lake microbial mats and samples thereof transplanted and maintained in new settings for extended periods of time. Significant changes in community composition, with clear replacement of the dominant cyanobacterium, Microcoleus chthonoplastes, were detected in all cases. The most dramatic shifts occurred in a sample kept in the laboratory for 3 years, which resulted in dominance by an Oscillatoria -like cyanobacterium whose 16S rRNA closely matched that of a morphologically similar isolate from mats in Mexico. Transfer of Solar Lake mat to an artificial experimental pond with incubation under seminatural conditions resulted in an increase in cyanobacterial diversity. Judging from the molecular signatures, two novel, previously unrecognized and phylogenetically well-delimited cyanobacterial populations became dominant. Through cultivation, one population was shown to correspond to a filamentous, non-heterocystous group of Cyanobacteria with very narrow trichomes (≈ 0.75–1.5 μm). The most dominant novel molecular signature, however, could not be identified by cultivation efforts or correlation with microscopy and, upon phylogenetic analyses, its 16S rRNA genes showed no particular close association to known cyanobacterial groups.  相似文献   

16.
This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.  相似文献   

17.
Summary Extensive tidal areas of the Recent coast of southern Tunisia are overgrown by microbial mats. Different mat types of which each are dominated by distinct and well adapted cyanobacterial species develop. Ecological response of the mat-forming microorganisms to climatological hydrological and sedimentological factors produce characteristic sedimentary structures (=microbially induced sedimentary structures). A suecession of Pleistocene rocks crops out near the lagoon El Bibane, southern Tunisia. The stratigraphic section comprises structures that we regard as fossil equivalents to those microbially induced structures we observe in the Recent coastal area. Preservation of the structures is result of lithification of the microbial mats. This we conclude from fossil filaments of cyanobacteria visible within the rock matrix. The Recent microbially induced sedimentary structures indicate facies zones within the modern tidal environment. Comparison of the Recent structures with the fossil analogues recorded in the stratigraphic section aids to identify the same distinct facies zones within the Pleistocene coastal environment also. Erosion by water currents forms step-like cliffs, and the microbial mat is undermined and ripped off piece by piece. shallows within the supratidal area are overgrown by copious microbial mats comprising structures like biolaminites and—varvites, as well as polygons of cracks. The features originate from effects triggered by seasonal variations of climate. Tufts and reticulate pattern of bulges indicate supernatant water films covering the mat surfaces. Morphologically higher parts of the Recent tidal area are overgrown by single-layered mats forming petees, induced by microbial mat growth and evaporitive pumping. The study demonstrates that microbially induced sedimentary structures can be used to reconstruct small-scaled facies zones within coastal environments. The also include hints on paleoclimatological, hydrological and sedimentological conditions.  相似文献   

18.
1. Lakes and ponds in the Larsemann Hills and Bølingen Islands (East‐Antarctica) were characterised by cyanobacteria‐dominated, benthic microbial mats. A 56‐lake dataset representing the limnological diversity among the more than 150 lakes and ponds in the region was developed to identify and quantify the abiotic conditions associated with cyanobacterial and diatom communities. 2. Limnological diversity in the lakes of the Larsemann Hills and Bølingen Islands was associated primarily with conductivity and conductivity‐related variables (concentrations of major ions and alkalinity), and variation in lake morphometry (depth, catchment and lake area). Low concentrations of pigments, phosphate, nitrogen, DOC and TOC in the water column of most lakes suggest extremely low water column productivity and hence high water clarity, and may thus contribute to the ecological success of benthic microbial mats in this region. 3. Benthic communities consisted of prostrate and sometimes finely laminated mats, flake mats, epilithic and interstitial microbial mats. Mat physiognomy and carotenoid/chlorophyll ratios were strongly related to lake depth, but not to conductivity. 4. Morphological‐taxonomic analyses revealed the presence of 26 diatom morphospecies and 33 cyanobacterial morphotypes. Mats of shallow lakes (interstitial and flake mats) and those of deeper lakes (prostrate mats) were characterised by different dominant cyanobacterial morphotypes. No relationship was found between the distribution of these morphotypes and conductivity. In contrast, variation in diatom species composition was strongly related to both lake depth and conductivity. Shallow ponds were mainly characterised by aerial diatoms (e.g. Diadesmis cf. perpusilla and Hantzschia spp.). In deep lakes, communities were dominated by Psammothidium abundans and Stauroforma inermis. Lakes with conductivities higher than ±1.5 mS cm?1 became susceptible to freezing out of salts and hence pronounced conductivity fluctuations. In these lakes P. abundans and S. inermis were replaced by Amphora veneta. Stomatocysts were important only in shallow freshwater lakes. 5. Ice cover influenced microbial mat structure and composition both directly by physical disturbance in shallow lakes and by influencing light availability in deeper lakes, as well as indirectly by generating conductivity increases and promoting the development of seasonal anoxia. 6. The relationships between diatom species composition and conductivity, and diatom species composition and depth, were statistically significant. Transfer functions based on these data can therefore be used in paleolimnological reconstruction to infer changes in the precipitation–evaporation balance in continental Antarctic lakes.  相似文献   

19.
The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.  相似文献   

20.
Living marine stromatolites at Highborne Cay, Bahamas, are formed by microbial mat communities that facilitate precipitation of calcium carbonate and bind and trap small carbonate sand grains. This process results in a laminated structure similar to the layering observed in ancient stromatolites. In the modern marine system at Highborne Cay, lamination, lithification and stromatolite formation are associated with cycling between three types of microbial communities at the stromatolite surface (Types 1, 2 and 3, which range from a leathery microbial mat to microbially fused sediment). Examination of 923 universal small-subunit rRNA gene sequences from these communities reveals that taxonomic richness increases during transition from Type 1 to Type 3 communities, supporting a previous model that proposed that the three communities represent different stages of mat development. The phylogenetic composition also changes significantly between these community types and these community changes occur in concert with variation in biogeochemical rates. The dominant bacterial groups detected in the stromatolites include Alphaproteobacteria , Planctomycetes , Cyanobacteria and Bacteroidetes . In addition, the stromatolite communities were found to contain novel cyanobacteria that may be uniquely associated with modern marine stromatolites. The implications of these findings are discussed in the context of current models for stromatolite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号