首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixteen oleanane-type glycosides were extracted from three Weigela hybrids and cultivars: W. x Styriaca, W. florida “Minor black” and W. florida “Brigela”, and four of them were previously undescribed ones: 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, and 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. Six compounds among the known ones were in sufficient amount to be tested for their antifungal activity against Candida albicans, and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa.  相似文献   

2.
Five triterpene saponins never reported before, hederifoliosides A-E, and four known triterpene saponins were isolated from the tubers of Cyclamen hederifolium. The structures of hederifoliosides A-E were determined as 3β,16α-dihydroxy-13β,28-epoxyolean-30-oic acid 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 3β,16α-dihydroxy-13β,28-epoxyolean-30-oic acid 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 3β,16α-dihydroxy-13β,28-epoxyolean-30-al 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-[β-D-glucopyranosyl-(1 → 6)]-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 30-O-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-3β,16α,30-trihydroxyolean-12-en-28-al 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 30-O-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-3β,16α,28,30-tetrahydroxyolean-12-en 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. The cytotoxic activity of the isolated compounds was evaluated against a small panel of cancer cell lines including Hela, H-446, HT-29, and U937. None of the tested compounds, in a range of concentrations between 1 and 50 μM, caused a significant reduction of the cell number.  相似文献   

3.
黄花远志的新齐墩果烷型三萜皂甙   总被引:3,自引:0,他引:3  
从云南产远志科药用植物黄花远志(PolygalaarillataBuchHamexDDon)茎皮的乙醇提取物中分离得到4个新的齐墩果烷型三萜皂甙,命名为黄花远志皂甙(arillatanoside)A~D。同时还分离得到1个已知的三萜皂甙远志甙(polygalasaponin)XXXV。它们的结构通过波谱方法推定。  相似文献   

4.
金铁锁的新三萜皂甙   总被引:10,自引:0,他引:10  
从金铁锁(Psammosilene tunicoides W.C.Wu et C.Y.Wu)根部分离得到5个齐墩果烷型五环三萜皂苷,它们的结构通过波谱和化学方法分别鉴定为:3-O-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl-gypsogenin(1),3-O-β-D-galactopyranosyl-(1→2)-[β-D-galactopyranosyl-(1→3)-β-D-glucuronopyranosyl-gypsogenin(2),3-O-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyra-nosyl-gypsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl(1→2)-β-D-fucopyranoside(LobatosideI,3),3-O-β-D-galactopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)-β-D-glucuronopyranosylgypsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl(1→2)-β-D-fucopyranoside(4),3-O-β-D-galactopyranosyl-(1→)-β-D-glucuro-nopyranosyl-grpsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-6-O-acetylglucopyranosyl-(1→3)-β-D-glucuro-nopyranosyl-gypsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-6-O-acetylglucopyranosyl-(1→3)]-α-L-rh-amnopyranosyl(1→2)-β-D-fucopyranoside(5),其中5为新化合物,1和2为首次从自然界中分离得到。  相似文献   

5.
《Phytochemistry》1986,26(1):229-235
A triterpenoid saponin mixture (so-called quillajasaponin) obtained from the bark of Quillaja saponaria was treated with weak alkali and two major desacylsaponins were isolated. On the basis of chemical and spectral evidence, they were determined as 3-O-β-D-galactopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-apiofuranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranoside and 28-O-β-D-apiofuranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-[β-D-glucopyranosyl-(1 → 3)]-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranoside. Diazomethane degradation providing selectively the 28-O-glycoside from the 3,28-O-bisglycoside was a useful method for the structure elucidation.  相似文献   

6.
Four new sulfated steroidal glycosides (asterosaponins), hippasteriosides A-D (1-4, resp.), were isolated from the alcoholic extract of the Far Eastern starfish Hippasteria kurilensis, collected in the Sea of Okhotsk near Kuril Islands. Compounds 1-4 were determined to contain the same unprecedented hexasaccharide moiety, β-D-xylopyranosyl-(1→3)-β-D-fucopyranosyl-(1→2)-β-D-quinovopyranosyl-(1→4)-[β-D-quinovopyranosyl-(1→2)]-β-D-xylopyranosyl-(1→3)-β-D-quinovopyranosyl, linked to C(6) of 3-O-sulfonylated steroidal aglycons, which differ from each other in their side-chain structures. Structures 1-4 were elucidated by extensive NMR and MS techniques, and chemical transformations. Not all the asterosaponins show a prominent cytotoxic activity against human colon tumor HT-29 cells, but some of them, especially compound 4 demonstrate a remarkable inhibition of the HT-29 colony formation in soft-agar clonogenic assay, suggesting its anticancerogenic properties.  相似文献   

7.
An acid-extractable, water-soluble, polysaccharide sulphate, isolated from Padina pavonia, comprised variable proportions of glucuronic acid, galactose, glucose, mannose, xylose, and fucose in addition to a protein moiety. Partial acid hydrolysis and autohydrolysis of the free acid polysaccharide yielded several oligosaccharides. Evidence from periodate oxidation studies indicated that the inner polysaccharide portion is composed of (1 → 4)-linked β-D-glucuronic acid, (1 → 4)-linked β-D-mannose and (1 → 4)-linked β-D-glucose residues. The heteropolymeric partially sulphated exterior portion is attached to the inner part and comprises various ratios of (1 → 4)-linked β-D-galactose, β-D-galactose-3-sulphate residues, (1 → 4)-linked β-D-glucose residues, (1 → 2)-linked α-L-fucose 4-sulphate residues and (1 → 3)-linked β-D-xylose residues.  相似文献   

8.
牛心朴子须根的化学成分研究   总被引:6,自引:2,他引:4  
从采自宁夏的萝摩科鹅绒藤属植物牛心朴子 (CynanchumkomaroviiAl.Iljinski.)须根的乙醇提取物中分离鉴定了十个非C2 1 甾体类化合物 :β D 呋喃果糖基 (2→ 1) α D [6 O 芥子酰基 ] 吡喃葡萄糖甙 (1) ,β D (3 O 芥子酰基 ) 呋喃果糖基 (2→ 1) α D [6 O 芥子酰基 ] 吡喃葡萄糖甙 (2 ) ,[6 O β D 吡喃葡萄糖基 (1→ 6 ) β D 吡喃葡萄糖基 1,2 双氧 (4 羟基 3,5 二甲氧基肉桂酰 ) (3) ,7 脱甲氧基娃儿藤碱 (4) ,9 羟基 芳樟醇 3 O β D 吡喃木糖基 (1→ 6 ) β D 吡喃葡萄糖甙 (5 ) ,(2E ,6R) 2 ,6 二甲基 2 ,7 辛二烯 1,6 二醇 (6 ) ,[(+) 丁香素 ](7) ,4′ O demethylepiyangambin(8) ,4′ 羟基 2′ 甲氧基苯乙酮 (9) ,(2S ,3S ,4R ,12E) N [2′ (R) 羟基二十二碳烷基 ] 1,3,4 三羟基 2 酰胺 二十碳烷基 12 烯 (10 )。除化合物 4和 9外 ,其余化合物均为首次从该植物中分离得到。  相似文献   

9.
The extracellular (1 → 3)-β-d-glucanase [1 → 3)-β-d-glucan glucanohydrolase, EC 3.2.1.6] produced by Rhizopus arrhizus QM 1032 was purified 305-fold in 70% overall yield. This preparation was found to be homogeneous by ultracentrifugation (sedimentation velocity and studies), electrophoresis on acrylamide gel with normal, sodium dodecyl sulfate, and urea-acetic acid gels, and upon isoelectric focusing. The amino acid composition of the enzyme has been determined and it possesses a carbohydrate moiety composed of mannose and galactose (in the ratio ≈5:1) that is linked to the protein through a 2-acetamido-2-deoxyglucose residue. The molecular number was confirmed by electrophoresis on gels of sodium dodecyl sulfate. The enzyme does not posses subunit structure. It hydrolyzes it substrates with retention of configuration and possesses transglycosylating ability. The rates of hydrolysis of a wide variety of substrates were determined, and its action pattern on a series of oligosaccharides containing mized (1 → 3-, (1 → 4)-, and (1 → 6)-β-d-glucopyranosyl residues was investigated. The enzyme favors stretches of β-d-(1 → 3) linkages, but it can hydrolyze β-d-(1 → 4) linkages that are flanked on the non-reducing side with stretches of β-d-(1 → 3) links. The enzyme will not act on (1 → 6)-β-d-glucosyl linkages located in stretches of β-d-(1 → 3) and will not act on (1 → 3) β-d-glycosidic linkages involving sugars other than d-glucose.  相似文献   

10.
瓦山锥植物富含植物多酚类成分且资源丰富,目前尚无该植物化学成分及生物活性方面的报道。为了明确瓦山锥的物质基础,为该植物资源的合理开发与可持续利用提供科学依据,该研究采用Sephadex LH-20、Diaion HP20SS、Toyopearl HW-40F等多种柱层析方法对瓦山锥树叶乙醇提取物进行分离纯化,从中得到11个单体化合物,它们的结构经波谱数据分析及文献对照鉴定为没食子酸(1)、咖啡酸(2)、1-(3’,4’-二羟基肉桂酰)-环戊-2,3-二酚(3)、绿原酸(4)、绿原酸甲酯(5)、kaempferol 3-O-β-D-glucuronopyranoside(6)、kaempferol 3-O-{β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside}(7)、quercetin 3-O-β-D-glucuronopyranoside(8)、quercetin 3-O-β-glucuronide-6″-methyl ester(9)、芦丁(10)、quercetin5-O-[α-L-rham...  相似文献   

11.
A new triterpenoid saponin, geniculatin, has been isolated from the ethanolic extract of Euphorbia geniculata (Euphorbiaceae). The saponin has been identified as 3β-[L-rhamnopyranosyl-(1→4)-D-xylopyranosyl-(1→4)-D-β-glucoronopyranosyl-(1→3)]-oxyolean-12-en-28-oic acid.  相似文献   

12.
α-Glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4-O-methyl-D-glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4-O-methyl-D-glucuronosyl-α-1,2-D-xylopyranosyl-β-1,4-xylopyranosyl-β-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D2O reaction mixture by 1H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its β-anomer from which the α-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial α-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).  相似文献   

13.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

14.
The Aspergillus awamori K4 β-xylosidase gene (Xaw1) sequence was deduced by sequencing RT-PCR and PCR products. The ORF was 2,412 bp and the predicted peptide was 804 amino acids long, corresponding to a molecular weight of 87,156 Da. The mature protein was 778 amino acids long with a molecular weight of 84,632 Da. A homology search of the amino acid sequence revealed that it was very similar to the Aspergillus niger β-xylosidase gene with only five amino acid differences. K4 β-xylosidase had the same catalytic mechanism as family 3 β-glucosidases, involving Asp in region A. At an early stage in the reaction with xylobiose and xylotriose, the hydrolysis rate was much lower than the transxylosylation rate, decreasing gradually as the substrate concentration increased, whereas the transxylosylation rate increased greatly. Aspergillus awamori K4 β-xylosidase had broad acceptor specificity toward alcohols, hydroxybenzenealcohols, sugar alcohols and disaccharides. A consensus portion involving the hydroxymethyl group of the acceptor was confirmed in the major transfer products 1(4)-O-β-d-xylosyl erythritol, (2-hydroxyl)-phenyl-methyl-β-d-xylopyranoside, 6S-O-β-d-xylosyl maltitol (S: sorbitol residue) and 6G-O-β-d-xylosyl palatinose (G: glucosyl residue). This might suggest that the methylene in the hydroxymethyl group facilitates base-catalyzed hydroxyl group attack of the anomeric center of the xylosyl–enzyme intermediate.  相似文献   

15.
金铁锁的两个新三萜皂苷   总被引:17,自引:0,他引:17  
从石竹科植物金铁锁(Psammosilene tunicoides W.C.Wu et C.Y.Wu)根部分离得到4个齐墩果酸型五环三萜皂苷。它们的结构通过波谱和化学方法分别鉴定为:3-O-β-D-galac-topyranosyl-(1→2 )-β-D-6-O-methylgtucuronopymnosyl-quillaic acid (1),3-O-β-D-galactopymnosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-gtucuronopyranosyl-quillaic acid (2),3-O-β-D-galactopyrano-syl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-6-O-methylgtucuronopyranosyl-quillaic acid(3),3-O-β-D-galactopymnosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-6-O-ethylgtucuronopyranosyl-quillaic acid(4)。其中1为木鳖子中发现的次甙,3和4为新化合物。  相似文献   

16.
Six new protopanaxadiol-type ginsenosides, named ginsenosides Ra(4) -Ra(9) (1-6, resp.), along with 14 known dammarane-type triterpene saponins, were isolated from the root of Panax ginseng, one of the most important Chinese medicinal herbs. The structures of the new compounds were determined by spectroscopic methods, including 1D- and 2D-NMR, HR-MS, and chemical transformation as (20S)- 3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (1), (20S)-3-O-[β-D-6-O-acetylglucopyranosyl-(1→2)-β-D-glucopyranosyl]-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (2), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (3), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (4), (20S)-3-O-{β-D-4-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (5), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (6). The sugar moiety at C(3) of the aglycone of each new ginsenoside is butenoylated or acetylated.  相似文献   

17.
We have established a synthetic method for obtaining β-D-Gal-(1→3)-[β-D-GlcNAc-(1→6)]-α-D-GalNAc-OC6H4NO2 -p (1), which is a carbohydrate unit of mucin-type 2 core. A β-N-acetyl-D-hexosaminidase from Nocardia orientalis catalyzed the synthesis of the desired compound 1 with its isomers β-D-GalNAc-(1→6)-β-D-Gal-(1→3)-α-D-GalNAc-OC6H4NO2-p (2) β-D-GlcNAc-(1→3)-β-D-Glc-(1→3)-α-D-GalNAc-OC6H4NO2-p (3) through N-acetylglucosaminyl transfer from N,N′-diacetylchitobiose and β-D-Gal-(1→3)-α-D-GalNAc-OC6H4NO2-p. The enzyme formed the trisaccharides 1, 2, and 3 in 14% overall yield based on β-D-Gal-(1→3)-α-D-GalNAc-OC6H4NO2-p as an acceptor substrate, and in the ratio of 44:32:24. In this way, N-acetylglucosaminyl transfer favored O-6 of the acceptor rather than O-6′, and occurred to a lesser extent at O-3′. This reaction was efficient enough to allow a one-pot preparation of the desired carbohydrate unit of mucin-type 2 core. When β-D-Gal-(1→3)-β-D-GalNAc-OC6H4NO2-p was used as an acceptor, the enzyme also synthesized three kinds of trisaccharides in the same regioselectivity with respect to O-6 and O-6′ versus O-3′ of the acceptor.  相似文献   

18.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

19.
The particulate enzyme responsible for the synthesis of β-(1→4)-d-glucans from UDP-[14C-d-glucose has been solubilized and some of its properties have been characterized. Mg2+ markedly enhanced synthesis of β-(1→4)-d-glucans and inhibited synthesis of β-(1→3)-d-glucans. The optimal pH for synthesis of β-(1→4)-d-glucans is near pH 8 and the synthesis was enhanced in these preparations by d-glucose, methyl-β-d-glucopyranoside and cellobiose.  相似文献   

20.
The structures of acidic oligosaccharides synthesized by a transglycosylation reaction by Bacillus circulans β-galactosidase, using lactose as the galactosyl donor, and N-acetylneuraminic acid (NeuAc) and glucuronic acid (GlcUA) as the acceptors were investigated. Acidic oligosaccharides thus synthesized were purified by anion exchange chromatography and charcoal chromatography. The MS and NMR studies indicated that the acidic oligosaccharides from NeuAc were Galβ-(1→8)-NeuAc, Galβ-(1→9)-NeuAc, and Galβ-(1→3)-Galβ-(1→8)-NeuAc, and those from GlcUA were Galβ-(1→3)-GlcUA and Galβ-(1→4)-Galβ-(1→3)-GlcUA. These are novel acidic galactooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号