首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The defining feature of the eukaryotic cell, the nucleus, is bounded by a double envelope. This envelope and the nuclear pores within it play a critical role in separating the genome from the cytoplasm. It also presents cells with a challenge. How are cells to remodel the nuclear compartment boundary during mitosis without compromising nuclear function? In the two billion years since the emergence of the first cells with a nucleus, eukaryotes have evolved a range of strategies to do this. At one extreme, the nucleus is disassembled upon entry into mitosis and then reassembled anew in the two daughter cells. At the other, cells maintain an intact nuclear compartment boundary throughout the division process. In this review, we discuss common features of the division process that underpin remodelling mechanisms, the topological challenges involved and speculate on the selective pressures that may drive the evolution of distinct modes of division.  相似文献   

2.
Most eukaryotic proteins destined for imminent destruction are first tagged with a chain of ubiquitin molecules and are subsequently dismantled by the proteasome. Ubiquitin-independent degradation of substrates by the proteasome, however, also occurs. The number of documented proteasome-dependent, ubiquitin-independent degradation events remains relatively small but continues to grow. Proteins involved in oncogenesis and tumor suppression make up the majority of the known cases for this type of protein destruction. Provocatively, viruses with confirmed or suspected oncogenic properties are also prominent participants in the pantheon of ubiquitin-independent proteasomal degradation events. In this review, we identify and describe examples of proteasome-dependent, ubiquitin-independent protein degradation that occur during tumor virus infections, speculate why this type of protein destruction may be preferred during oncogenesis, and argue that this uncommon type of protein turnover represents a prime target for antiviral and anticancer therapeutics.  相似文献   

3.
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.  相似文献   

4.
Mixed respiratory viral infections occurring in the course of 8 influenza A epidemics in the Estonian SSR between 1969 and 1978 were investigated. A total of 1638 patients were followed up. The IF method, serological test CFR and HIR and isolation of the virus on tissue cultures and chick embryos were used. Mixed infections were found in 0-77.7% of laboratory-confirmed cases, depending on the epidemic. A combination of influenza A + parainfluenza was observed most frequently during the influenza epidemics in 1971-1977 and a combination of influenza A + influenza B during the 1977-1978 epidemic.  相似文献   

5.
《Free radical research》2013,47(10):1163-1169
Abstract

Oxygen and nitrogen radicals are frequently produced during viral infections. These radicals are not only a physiological mechanism for pathogen clearance but also result in many pathological consequences. Low concentrations of radicals can promote viral replication; however, high concentrations of radicals can also inhibit viral replication and are detrimental to the cell due to their mitogenic activity. We reviewed the detailed mechanisms behind oxygen and nitrogen radical production and focused on how viruses induce radical production. In addition, we examined the effects of oxygen and nitrogen radicals on both the virus and host. We also reviewed enzymatic and chemical detoxification mechanisms and recent advances in therapeutic antioxidant applications. Many molecules that modulate the redox balance have yielded promising results in cell and animal models of infection. This encourages their use in clinical practice either alone or with existing therapies. However, since the redox balance also plays an important role in host defence against pathogens, carefully designed clinical trials are needed to assess the therapeutic benefits and secondary effects of these molecules and whether these effects differ between different types of viral infections.  相似文献   

6.
7.
Certain virus infections depend on the presence of T cell help for the generation of primary CD8(+) T cell responses. However, the mechanisms that render these particular viral infections T cell help dependent is largely unknown. In this study, we compared CD8(+) T cell responses elicited by lymphocytic choriomeningitis virus infection, as prototype of a T cell help independent infection, with T cell help dependent CD8(+) T cell responses induced by vaccinia virus infection. In this paper, we show that a key parameter decisive for T cell help independence is the ability of an infectious agent to stimulate early and robust production of type I IFN. Experimental provision of type I IFN during VV infection rendered the ensuing CD8(+) T cell response completely T cell help independent. Our results support a model in which type I IFN has to be present during the first 3 d of Ag encounter and has to act directly on the responding CD8(+) T cells to promote their survival and effector differentiation. We show that type I IFN signaling on responding CD8(+) T cells induces profound upregulation of CD25 and increased IL-2 expression; however, neither this nor IL-15 accounts for the type I IFN effects on responding CD8(+) T cells. Thus, type I IFN can effectively replace the requirement of T cell help by directly promoting CD8(+) T cell survival and differentiation independent of the type I IFN-induced cytokines IL-2 and IL-15.  相似文献   

8.
Red blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum, the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments.  相似文献   

9.
Intracellular pathogens such as the human immunodeficiency virus, hepatitis C and B or Epstein–Barr virus often cause chronic viral infections in humans. Persistence of these viruses in the host is associated with a dramatic loss of T-cell immune response due to functional T-cell exhaustion. Developing efficient immunotherapeutic approaches to prevent viral persistence and/or to restore a highly functional T-cell mediated immunity remains a major challenge. During the last two decades, numerous studies aimed to identify relevant host-derived factors that could be modulated to achieve this goal. In this review, we focus on recent advances in our understanding of the role of cytokines in preventing or facilitating viral persistence. We concentrate on the impact of multiple relevant cytokines in T-cell dependent immune response to chronic viral infection and the potential for using cytokines as therapeutic agents in mice and humans.  相似文献   

10.
11.
12.
13.
Cyclophilin A (CyPA) is a peptidyl-prolyl cis/trans isomerase originally identified as the target of the immunosuppressive drug cyclosporine A. A number of reports have demonstrated that CyPA plays a critical role in the successful replication of viruses such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), etc. However, recent studies demonstrated that CyPA also possesses a repressive effect on the replication of some viruses like Influenza A virus and rotavirus. Moreover, CyPA could also regulate host IFN-I response to viral infections. Together, these evidences showed diverse roles of CyPA in viral infection.  相似文献   

14.
15.
Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.  相似文献   

16.
朗格汉斯细胞位于黏膜状组织和皮肤分层鳞状上皮,是高度专职的抗原呈递细胞家族成员,也是表皮中唯一的树突细胞。其作为一种皮肤免疫细胞,在摄取、加工处理和呈递抗原及诱导 T 细胞反应等方面发挥着巨大作用。机体皮肤或黏膜在遭遇不同病原微生物入侵时,朗格汉斯细胞与病原体的相互作用及引起后续免疫反应的机制存在差异。本文就朗格汉斯细胞的生物学功能及其在一些病毒感染中的作用进行综述。  相似文献   

17.
Nuclear import of viral DNA genomes   总被引:3,自引:0,他引:3  
  相似文献   

18.
Background information. VACV (vaccinia virus) is one of the most complex viruses, with a size exceeding 300 nm and more than 100 structural proteins. Its assembly involves sequential interactions and important rearrangements of its structural components. Results. We have used electron tomography of sections of VACV‐infected cells to follow, in three dimensions, the remodelling of the membrane components of the virus during envelope maturation. The tomograms obtained suggest that a number of independent ‘crescents’ interact with each other to enclose the volume of an incomplete ellipsoid in the viral factory area, attaining the overall shape and size characteristic of the first immature form of the virus [IV (immature virus)]. The incorporation of the DNA into these forms leads to particles with a nucleoid [IVN (IV with nucleoid)] that results in local disorganization of the envelope in regions near the condensed DNA. These particles suffer the progressive disappearance of the membrane outer spikes with a change in the shape of the membrane, becoming locally curled. The transformation of the IVN into the mature virus involves an extreme rearrangement of the particle envelope, which becomes fragmented and undulated. During this process, we also observed connections between the outer membranes with internal ones, suggesting that the latter originate from internalization of the IV envelope. Conclusions. The main features observed for VACV membrane maturation during morphogenesis resemble the breakdown and reassembly of cellular endomembranes.  相似文献   

19.
Intracellular and cell surface pattern-recognition receptors (PRRs) are an essential part of innate immune recognition and host defense. Here, we have compared the innate immune responses between humans and bats to identify a novel membrane-associated protein, Rnd1, which defends against viral and bacterial infection in an interferon-independent manner. Rnd1 belongs to the Rho GTPase family, but unlike other small GTPase members, it is constitutively active. We show that Rnd1 is induced by pro-inflammatory cytokines during viral and bacterial infections and provides protection against these pathogens through two distinct mechanisms. Rnd1 counteracts intracellular calcium fluctuations by inhibiting RhoA activation, thereby inhibiting virus internalisation. On the other hand, Rnd1 also facilitates pro-inflammatory cytokines IL-6 and TNF-α through Plxnb1, which are highly effective against intracellular bacterial infections. These data provide a novel Rnd1-mediated innate defense against viral and bacterial infections.Subject terms: Viral infection, Pattern recognition receptors  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号