首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The interaction between Hessian fly (Mayetiola destructor) and wheat (Triticum aestivum) involves a gene-for-gene resistance mechanism. The incompatible interaction leading to resistance involves up-regulation of several Hfr (Hessian fly responsive) genes encoding proteins with potential insecticidal activity. The encoded proteins HFR-1, HFR-2 and HFR-3 all possess lectin-like domains. HFR-1 and HFR-3 were produced as recombinant proteins using Escherichia coli and Pichia pastoris, respectively as expression hosts. Purified recombinant proteins were assayed for insecticidal effects towards cereal aphid (Sitobion avenae), an insect to which wheat shows only tolerance. Both HFR-1 and HFR-3 were found to be insecticidal towards S. avenae when fed in artificial diet. Although HFR-3 has sequence similarity and similar chitin-binding activity to wheat germ agglutinin (WGA), the latter protein was almost non-toxic to S. avenae. HFR-3 binds strongly to aphid midguts after ingestion, whereas WGA binds but does not persist over a feed-chase period. Quantitative PCR showed that Hfr-3 mRNA does not increase in level after cereal aphid infestation. The results suggest that the lack of effective resistance to cereal aphid in wheat is not due to an absence of genes encoding suitable insecticidal proteins, but results from a failure to up-regulate gene expression in response to aphid attack.  相似文献   

3.
Benzoxazinoids are key defence chemicals in cereals that are known to affect several aspects of aphid biology. However, little is known about how they affect aphid physiology. In the present study, we report changes in the whole‐body proteomic profiles of a 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA)‐susceptible genotype of the grain aphid Sitobion avenae (F.) after being exposed to wheat cultivars containing contrasting levels of DIMBOA. The proteome is analyzed after 14 days (short term) and 28 days (long term) of rearing on these cultivars. Seventy‐two proteins are differentially regulated among the treatments and 49 are identified. Exposure to high‐DIMBOA plants results in a higher number of proteins regulated long term. DIMBOA exposure in S. avenae initially generates greater cellular activities, mostly involving cytoskeleton function and possibly related to detoxification. This function appears to be unimportant at long term and is eventually replaced by effects on metabolism function and homeostasis. Taken together, the results of the present study show that the responses of aphids to the secondary plant compounds, such as DIMBOA, exhibit a temporal dynamic in the proteome, possibly helping aphids to overcome the effect of these toxic compounds.  相似文献   

4.
The use of crop varieties resistant or tolerant to insect pests or other stress factors is one approach in non‐chemical crop‐protection. Knowledge of the biochemical and molecular background of insect–plant interactions is a prerequisite for optimizing breeding for resistance. However, the resistance genes involved in plant–aphid interactions have so far only been identified and characterized in very few plant species. Our work aims to elucidate the molecular and biochemical mechanisms involved in resistance of apple trees, Malus domestica L. (Rosaceae), against its primary aphid pest, the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera: Aphididae), which is considered a serious economic pest of apple. Gene expression in both resistant and susceptible apple cultivars after infestation with rosy apple aphids was investigated by employing the cDNA‐AFLP method (cDNA–Amplified Fragment Length Polymorphism). From approximately 12 500 cDNA fragments detected on polyacrylamide gels, 21 bands were apparently up‐ or down‐regulated only in the resistant cultivar ‘Florina’ after aphid infestation compared to the susceptible cultivar ‘Topaz’ and/or mechanically wounded or non‐infested leaves. These fragments were cloned, sequenced, and the pattern of gene expression for six fragments was subsequently verified by virtual Northern blots. Sequence comparisons of these fragments to GenBank accessions revealed homologies to already known genes, most of them isolated from Arabidopsis thaliana L. Among them, a putative RNase‐L‐inhibitor‐like protein, a pectinacetylesterase, an inositol‐phosphatase‐like protein, a precursor of the large chain of the ribulose‐1,5‐biphosphate‐carboxylase, and defence‐related genes such as a vacuolar H(+)‐ATPase subunit‐like protein and an ADP‐ribosylating enzyme were identified. The results are discussed in relation to a putative role of these genes in conferring aphid resistance in apple trees.  相似文献   

5.
6.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

7.
研究表明,施钾能够提高作物对蚜虫的抗性,但其机理尚不明确。试验采用营养液培养的方法,设置2 mmol/L和0.005mmol/L KCl两个钾浓度,分析不同钾水平培养下的小麦植株在蚜虫为害后,体内茉莉酸(JA)和水杨酸(SA)的含量和脂氧合酶(LOX)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)等防御酶活性的变化。结果表明,低钾胁迫显著降低了小麦体内JA和SA的含量,并且诱导LOX和POD酶活性增强,但是对PPO和PAL酶活性没有显著影响。蚜虫为害48 h后,高钾小麦体内JA含量显著高于低钾植株,而SA含量没有明显变化。高钾显著提高了蚜虫为害后小麦叶片中的LOX、PAL、PPO和POD酶活性,而低钾小麦体内4种酶的活性在整个虫害调查期间均没有显著变化。研究表明,充足供钾能够显著提高小麦受到蚜虫为害后体内茉莉酸含量,激活其体内的JA信号传导途径,从而提高防御酶活性,增强其对蚜虫的抵御能力。  相似文献   

8.
9.
10.
Black Point in wheat is a dark discoloration at the embryo end of the grain, which causes substantial financial losses to wheat growers due to down-grading of otherwise high-grade wheat. There does not appear to be a single cause for Black Point, although evidence suggests that fungal infection is the main link to Black Point symptoms. We sought to identify grain proteins from Black Point-affected and Black Point-free wheat cultivar SUN239V, which is known to be very susceptible to Black Point. The proteomes of both the germ and endosperm-bran components of Black Point-affected and Black Point-free grain were compared using two-dimensional gel electrophoresis (2-DE) with six replicate gels run for each protein sample. Approximately 1478 discrete protein spots were found in 2-DE gels from the germ fraction of the grain, of which 354 were identified by mass spectrometry (MS). Similarly, 1360 discrete protein spots were found from the endosperm-bran fraction, of which 303 were identified by MS. No proteins of fungal or bacterial origin were positively identified, suggesting that, at least in some cases, Black Point is not associated with microbial activity. Of the germ proteins, 252 were differentially expressed in Black Point-affected tissue, with 67 of these proteins identified by MS. Of the endosperm-bran proteins, 317 were differentially expressed in Black Point-affected tissue, with 86 identified. The largest of 12 functional classes to which the differentially abundant proteins were assigned was the 'stress' class, i.e. products of genes associated with stress, disease and defence. Higher levels of these proteins were found in Black Point-free grain, suggesting that protection from the disease might be afforded by increased levels of the 'stress' proteins.  相似文献   

11.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) is one of the most destructive insect pests of cereals world-wide. Although resistant cultivars have been bred, the biochemical mechanism of resistance is unknown. The aim of this work was to gain information on the mechanism of resistance which could contribute to more directed breeding of resistant cultivars in the future. The effect of RWA infestation on the inter- and intracellular β-1,3-glucanase activities was studied in different resistant wheat (Triticum aestivum L.) cultivars containing the Dn-1 gene for RWA resistance and corresponding near-isogenic susceptible cultivars. The activity was determined spectrophotometrically by measuring the release of glucose from laminarin. Infestation differentially induced the intra- and intercellular activities to much higher levels in resistant than susceptible cultivars within 48 h. According to immunological studies induced enzyme activities were due to increased protein levels. The intracellular β-1,3-glucanase contained about 8% exo-activity. The exo-activity made an insignificant contribution to the intercellular activity. The genetic background into which the resistance gene was bred did affect the level of activity that corresponded to the resistance performance. Seven apoplastic isoforms of β-1,3-glucanase, varying from acidic to basic, were resolved by isoelectric focusing. All isoenzymes were equally induced and no specific one could be linked to resistance or susceptibility. The RWA induced β-1,3-glucanase activity in resistant cultivars closely resembles defence responses during pathogenesis and seems to be part of a general defence response like the hypersensitive reaction (HR), which confers resistance to the RWA. This knowledge might be helpful in future to identify genes for RWA resistance. The increased β-1,3-glucanase activity after RWA infestation might serve as an additional measure to biochemically trace resistance in crosses during breeding.  相似文献   

12.
The potential for exploiting natural wheat resistance to control the cereal aphid Rhopalosiphum padi, the most important aphid pest of small grain cereals in the UK, was investigated as an alternative approach to the use of insecticides. The investigation focussed on a group of secondary metabolites, the hydroxamic acids or benzoxazinones, present naturally as glucosides, but which hydrolyse on tissue damage to give biologically active aglycones, e.g. 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA) which are associated with natural plant defence. These can be important for resistance against insects, fungi, bacteria and nematodes for a range of cultivated monocotyledonous plants and could ultimately be combined with other defence mechanisms to provide a general approach to cereal aphid control. Levels of hydroxamic acids, particularly DIMBOA‐glucoside, were determined in hexaploid (Triticum aestivum) and tetraploid (Triticum durum) wheat varieties and differences were found between species and varieties. The effect of feeding by R. padi on the level of hydroxamic acids in the leaf tissue was also investigated. Thus, after 24 h of aphid feeding, as an apparently localised hydrolytic defence reaction in the leaf, levels of DIMBOA‐glucoside decreased noticeably. When aphids were fed on sucrose solution containing low doses of DIMBOA there was a significant mortality compared to the sucrose control. However, the levels of and variation in hydroxamic acids in the wheat varieties investigated were insufficient for significant differences in aphid behaviour and development.  相似文献   

13.
Planting date effects on arthropod infestation and viral plant disease are undocumented for winter wheat, Triticum aestivum L., in South Dakota and the northern Great Plains. Winter wheat was planted over three dates (early, middle, and late; generally from late August to late September) to determine the effect on abundance of insect pests, incidence of plant damage, incidence of viral plant disease, and grain yield. The study was conducted simultaneously at two sites in South Dakota over three consecutive cropping seasons for a total of six site yr. Cereal aphids (Homoptera: Aphididae) were abundant in three site yr. Rhopalosiphum padi (L.), bird cherry-oat aphid, was the most abundant cereal aphid at the Brookings site, whereas Schizaphis graminum (Rondani), greenbug, predominated at Highmore. Aphid-days were greater in early versus late plantings. Aphid abundance in middle plantings depended on aphid species and site, but it usually did not differ from that in early plantings. Incidence of Barley yellow dwarf virus (family Luteoviridae, genus Luteovirus, BYDV) declined with later planting and was correlated with autumnal abundance of cereal aphids. Incidence of BYDV ranged from 24 to 81% among 1999 plantings and was < 8% in other years. Damage to seedling wheat by chewing insects varied for two site-years, with greater incidence in early and middle plantings. Wheat streak mosaic virus, spring infestations of cereal aphids, wheat stem maggot, and grasshoppers were insignificant. Yield at Brookings was negatively correlated with BYDV incidence but not cereal aphid abundance, whereas yield at Highmore was negatively correlated with aphid abundance but not BYDV incidence. Planting on 20 September or later reduced damage from chewing insects and reduced cereal aphid infestations and resulting BYDV incidence.  相似文献   

14.
Elicitors are molecules which can induce the activation of plant defence responses. Elicitor activity of intercellular wash fluid from Russian wheat aphid, Diuraphis noxia (Mordvilko) infested resistant (cv Tugela DN), and susceptible (cv Tugela), wheat (Triticum aestivum L.), was investigated. Known Russian wheat aphid resistance related responses such as peroxidase and beta-1,3-glucanase activities were used as parameters of elicitor activity. The intercellular wash fluid from infested resistant plants contains high elicitor activity while that from infested susceptible plants contains no or very little elicitor activity. After applying C-18 reverse phase and concanavalin A Sepharose chromatography, elicitor active glycoproteins were isolated from the intercellular wash fluid of Russian wheat aphid infested resistant wheat. The elicitor-active glycoproteins separated into three polypeptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated glycoproteins elicited peroxidase activity to higher levels in resistant than in susceptible cultivars. It was evident that the glycoproteins were probably a general elicitor of plant origin. Information gained from these studies is valuable for the development of plant activators to enhance the defence responses of plants.  相似文献   

15.
16.
1. Changes in the arthropod community structure can be attributed to differences in constitutively expressed plant traits or those that change depending on environmental conditions such as herbivory. Early‐season herbivory may have community‐wide effects on successive insect colonisation of host plants and the identity of the initially inducing insect may determine the direction and strength of the effects on the dynamics and composition of the associated insect community. 2. Previous studies have addressed the effect of early infestation with a chewing herbivore. In the present study, the effect of early infestation was investigated with a phloem‐feeding aphid [Brevicoryne brassicae L. (Hemiptera, Aphididae)] on the insect community associated with three wild cabbage (Brassica oleracea L.) populations, which are known to differ in defence chemistry, throughout the season in field experiments. 3. Aphid infestation had asymmetric effects on the associated insect community and only influenced the abundance of the natural enemies of aphids, but not that of chewing herbivores and their natural enemies. The effect size of aphid infestation further depended on the cabbage population. 4. Aphid feeding has been previously reported to promote host‐plant quality for chewing herbivores, which has been attributed to antagonism between the two major defence signalling pathways controlled by the hormones salicylic acid (SA) and jasmonic acid (JA), respectively. Our results show no effects of early infestation by aphids on chewing herbivores, suggesting the absence of long‐term JA–SA antagonism. 5. Investigating the effects of the identity of an early‐season coloniser and genotypic variation among plant populations on insect community dynamics are important in understanding insect–plant community ecology.  相似文献   

17.
18.
Insect pests can reduce wheat yield by direct feeding and transmission of plant viruses. Here we report results from laboratory and field phenotyping studies on a wide range of wheat, including landraces from the Watkins collection deriving from before the green revolution, more modern cultivars from the Gediflux collection (north‐western Europe) and modern UK Elite varieties, for resistance to the bird cherry‐oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) and the English grain aphid, Sitobion avenae (Homoptera: Aphididae). A total of 338 lines were screened for R. padi and 340 lines for S. avenae. Field trials were also conducted on 122 Watkins lines to identify wheat bulb fly, Delia coarctata, preference on these landraces. Considerable variation was shown in insect performance among and within different wheat collections, with reduced susceptibility in a number of varieties, but phenotyping did not identify strong resistance to aphids or wheat bulb fly. Field trials showed within collection differences in aphid performance, with fewer aphids populating lines from the Watkins collection. This differs from development data in laboratory bioassays and suggests that there is a pre‐alighting cue deterring aphid settlement and demonstrates differences in aphid preference and performance on older plants in the field compared with seedlings in the laboratory, highlighting the need for phenotyping for aphid resistance at different plant growth stages. No association was identified between performance of the different insect species on individual varieties, potentially suggesting different nutritional requirements or resistance mechanisms.  相似文献   

19.
Citrus plants are currently facing biotic and abiotic stresses. Therefore, the characterization of molecular traits involved in the response mechanisms to stress could facilitate selection of resistant varieties. Although large cDNA microarray profiling has been generated in citrus tissues, the available protein expression data are scarce. In this study, to identify differentially expressed proteins in Citrus clementina leaves after infestation by the two-spotted spider mite Tetranychus urticae, a proteome comparison was undertaken using two-dimensional gel electrophoresis. The citrus leaf proteome profile was also compared with that of leaves treated over 0-72 h with methyl jasmonate, a compound playing a key role in the defense mechanisms of plants to insect/arthropod attack. Significant variations were observed for 110 protein spots after spider mite infestation and 67 protein spots after MeJA treatments. Of these, 50 proteins were successfully identified by liquid chromatography-mass spectrometry-tandem mass spectrometry. The majority constituted photosynthesis- and metabolism-related proteins. Five were oxidative stress associated enzymes, including phospholipid glutathione peroxidase, a salt stressed associated protein, ascorbate peroxidase and Mn-superoxide dismutase. Seven were defense-related proteins, such as the pathogenesis-related acidic chitinase, the protease inhibitor miraculin-like protein, and a lectin-like protein. This is the first report of differentially regulated proteins after T. urticae attack and exogenous MeJA application in citrus leaves.  相似文献   

20.
Field-caged populations of the rose-grain aphid Metopolophium dirhodum were established on winter wheat (cv. Bounty) during the summer of 1981. An early wheat growth stage (G.s.) (40 to 69) and a late (G.s. 65 to 73) aphid infestation treatment were compared; only the early infestation resulted in a significant reduction in grain weight (15%), although the infestation sizes were similar in the two treatments. Baking quality of the flour was unaffected by both treatments. Caged populations were also established on winter wheat (cv. Avalon) in 1982 but, in spite of aphid numbers as large as in 1981, no significant yield loss was recorded. An infection of take-all fungus Gaeumannomyces graminis developed during the course of this experiment and may have masked the effect of the aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号