首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleoside analogs used in cancer chemotherapy and in treatment of virus infections are phosphorylated in cells by nucleoside and nucleotide kinases to their pharmacologically active form. The phosphorylated nucleoside analogs are incorporated into DNA and cause cell death or inhibit viral replication. Cellular DNA is replicated both in the nucleus and in the mitochondria, and nucleoside analogs may interfere with DNA replication in both these subcellular locations. In the present study we created a cell model system where nucleoside analogs were phosphorylated, and thereby pharmacologically activated, in either the nucleus, cytosol, or mitochondria of cancer cells. The system was based on the reconstitution of deoxycytidine kinase (dCK)-deficient Chinese hamster ovary cells with genetically engineered dCK targeted to the different subcellular compartments. The nucleoside analogs phosphorylated by dCK in the mitochondria were predominantly incorporated into mitochondrial DNA, whereas the nucleoside analogs phosphorylated in the nucleus or cytosol were incorporated into nuclear DNA. We further show that the nucleoside analogs phosphorylated in the mitochondria induced cell death by an apoptotic program. These data showed that the subcellular site of nucleoside analog phosphorylation is an important determinant for incorporation of nucleoside analogs into nuclear or mitochondrial DNA.  相似文献   

2.
The nucleoside analog 2',3'-dideoxycytidine (ddCyd) has been shown to inhibit the infectivity and cytopathic effect of human immunodeficiency virus on human OKT4+ lymphocytes in vitro. Metabolism of ddCyd by human T-lymphoblastic cells (Molt 4) negative for human immunodeficiency virus and OKT4 was examined. Molt 4 cells accumulated ddCyd and its phosphorylated derivatives into acid-soluble and acid-insoluble material in a dose-dependent manner. For each concentration tested, 2',3'-dideoxycytidine triphosphate represented 40% of the total acid-soluble pool of ddCyd metabolites. Uptake of 5 microM ddCyd was linear for 4 h after addition of drug. Efflux of ddCyd metabolites from cells followed a biphasic course with an initial retention half-life of 2.6 h for 2',3'-dideoxycytidine triphosphate. DNA, but not RNA, of cells incubated with [3H]ddCyd became radiolabeled. Nuclease and phosphatase treatment of DNA followed by reverse-phase high pressure liquid chromatography showed that the nucleoside was incorporated into DNA in its original form. ddCyd was not susceptible to deamination by human Cyd-dCyd deaminase. It was a poor substrate for human cytoplasmic and mitochondrial dCyd kinases, with Km values of 180 +/- 30 and 120 +/- 20 microM, respectively. DNA polymerases alpha, beta, and gamma varied in their sensitivity to inhibition by ddCTP with Ki values of 110 +/- 40, 2.6 +/- 0.3, and 0.016 +/- 0.008 microM, respectively; however, inhibition was competitive with dCTP in each case.  相似文献   

3.
5-Iodo-5'-amino-2',5'-dideoxyuridine (AIdUrd) is a novel thymidine analog which inhibits herpes simplex virus, type 1 (HS-1 virus) replication in the absence of detectable host toxicity. When murine, simian, or human cells in culture are treated with [125I]AIdUrd for up to 24 hours essentially none of the nucleoside becomes cell-associated. In contrast, upon HS-1 virus infection significant radiolabel is detected in both nucleotide pools and in DNA. The major acid-soluble metabolite has been shown by enzymic and chromatographic analysis to be the 5'-triphosphate of AIdUrd. DNA from HS-1 virus-infected Vero cells labeled with [14C]thymidine, 5-[125I]iodo-2'-deoxyuridine (IdUrd), or [125I]AIdUrd was isolated by buoyant density centrifugation and subjected to digestion by pancreatic DNase I, spleen DNase II, micrococcal nuclease, spleen, and venom phosphodiesterases. Analysis of the digestion products clearly indicate that AIdUrd is incorporated internally into the DNA structure. DNA containing AIdUrd therefore contains phosphoramidate (P-N) bonds, known to be extremely acid-labile. The selective HS-1 virus-induced phosphorylation of AIdUrd and its subsequent incorporation into DNA may account for the unique biological activity of the AIdUrd nucleoside.  相似文献   

4.
The gene 4 protein of bacteriophage T7 is a multifunctional enzyme that catalyzes (i) the hydrolysis of nucleoside 5'-triphosphates, (ii) the synthesis of tetraribonucleotide primers at specific recognition sequences on a DNA template, and (iii) the unwinding of duplex DNA. All three activities depend on binding of gene 4 protein to single-stranded DNA followed by unidirectional 5' to 3' translocation of the protein (Tabor, S., and Richardson, C. C. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 205-209). Binding of gene 4 protein to single-stranded DNA, assayed by retention of DNA-protein complexes on nitrocellulose filters, is random with regard to DNA sequence. Although gene 4 protein does not bind to duplex DNAs, the presence of a 240-nucleotide-long single-stranded tail on a 7200-base pair duplex DNA molecule is sufficient for gene 4 protein to cause retention of the DNA on a filter. The binding reaction requires, in addition to MgCl2, the presence of a nucleoside 5'-triphosphate, but binding is not dependent on hydrolysis; nucleoside 5'-diphosphate will substitute for nucleoside 5'-triphosphate. Of the eight common nucleoside triphosphates, dTTP promotes optimal binding. The half-life of the gene 4 protein-DNA complex depends on both the secondary structure of the DNA and on whether or not the nucleoside 5'-triphosphate cofactor can be hydrolyzed. Using the nonhydrolyzable nucleoside 5'-triphosphate analog, beta,gamma-methylene dTTP, the half-life of the gene 4 protein-DNA complex is greater than 80 min. In the presence of the hydrolyzable nucleoside 5'-triphosphate, dTTP, the half-life of the gene 4 protein-DNA complex using circular M13 DNA is at least 4 times longer than that observed using linear M13 DNA.  相似文献   

5.
An antisense oligonucleotide is expected as an innovative drug for cancer and hereditary diseases. In this paper, we designed and synthesized DNAs containing a novel nucleoside analog, 1-(4-C-aminomethyl-2-deoxy-2-fluoro-β-d-arabinofuranosyl)thymine, and evaluated their properties. It was revealed that the analog slightly decreases the thermal stability of the DNA/RNA duplex but significantly increases the stability of DNA in a buffer containing bovine serum. Furthermore, it turned out that the DNA/RNA duplex containing the analog is a good substrate for Escherichia coli RNase H. Thus, DNAs containing the nucleoside analog would be good candidates for the development of therapeutic antisense oligonucleotides.  相似文献   

6.
8-Hydroxyadenine (8-OH-Ade) is one of the major lesions, which is formed in DNA by hydroxyl radical attack on the C-8 position of adenine followed by oxidation. We describe the measurement of the nucleoside form of this compound, 8-hydroxy-2'-deoxyadenosine (8-OH-dAdo) in DNA by liquid chromatography/mass spectrometry (LC/MS). The developed methodology enabled the separation by LC of 8-OH-dAdo from intact and modified nucleosides in enzymic hydrolysates of DNA. Measurements by MS were performed using atmospheric pressure ionization-electrospray process. Isotope-dilution MS was applied for quantification using a stable isotope-labeled analog of 8-OH-dAdo. The level of sensitivity of LC/MS with selected-ion monitoring (SIM) for 8-OH-dAdo amounted to approximately 10 femtomol of this compound on the LC column. This level of sensitivity is similar to that previously reported using LC-tandem MS (LC/MS/MS) with multiple-reaction monitoring mode (MRM) (7.5 femtomol). This compound was quantified in DNA at a level of approximately one molecule/10(6) DNA bases using amounts of DNA as low as 5 microg. The results suggested that this lesion may be quantified in DNA at even lower levels, when more DNA is used for analysis. In addition, gas chromatography/isotope-dilution mass spectrometry with SIM (GC/IDMS-SIM) was applied to measure 8-OH-Ade in DNA following its removal from DNA by acidic hydrolysis. The background levels of 8-OH-dAdo and 8-OH-Ade measured by LC/IDMS-SIM and GC/IDMS-SIM, respectively, were nearly identical. In addition, DNA samples, which were exposed to ionizing radiation at different radiation doses, were analyzed by these techniques. Nearly identical results were obtained, indicating that both LC/IDMS-SIM and GC/IDMS-SIM can provide similar results. The level of sensitivity of GC/MS-SIM for 8-OH-Ade was also measured and found to be significantly greater than that of LC/MS-SIM and the reported sensitivity of LC/MS/MS-MRM for 8-OH-dAdo. The results show that the LC/MS technique is well suited for the measurement of 8-OH-dAdo in DNA.  相似文献   

7.
Abstract

Deoxyribonucleoside triphosphates (dNTPs) are building blocks for the biosynthesis of DNA. Various modified dNTPs’ analogs have synthesized by structural changes of nucleoside’s susgar and nucleobases and employed for synthesis of modified DNA. A very few modified dNTPs have prepared from non-sugar nucleoside analogs. This report describes the synthesis of acyclic nucleoside triphosphate (NTP) analog from amino acid L-Serine as aminopropanolyl-thymine triphosphate (ap-TTP) and demonstrate its biochemical evaluation as enzymatic incorporation of ap-TTP into DNA with DNA polymerases with primer extension methods. Alanyl peptide nucleicacids (Ala-PNA) are the analogs of DNA which contains alanyl backbone. Aminopropanolyl – analogs are derivatives of alanyl back bone. Ap-TTP analog is nucleoside triphosphate analog derived from Ala-PNA. Importantly, this report also sheds light on the crystal packing arrangement of alaninyl thymine ester derivative in solid-state and reveals the formation of self-duplex assembly in anti-parallel fashion via reverse Watson-Crick hydrogen bonding and π–π interactions. Hence, ap-TTP is a useful analog which also generates the free amine functional group at the terminal of DNA oligonucleotide after incorporation.  相似文献   

8.
During the last few years, many gene therapy strategies have been developed for various disease targets. The development of anticancer gene therapy strategies to selectively generate cytotoxic nucleoside or nucleotide analogs is an attractive goal. One such approach involves the delivery of herpes simplex virus thymidine kinase followed by the acyclic nucleoside analog ganciclovir. We have developed another gene therapy methodology for the treatment of cancer that has several significant attributes. Specifically, our approach involves the delivery of E. coli purine nucleoside phosphorylase, followed by treatment with a relatively non-toxic nucleoside prodrug that is cleaved by the enzyme to a toxic compound. This presentation describes the concept, details our search for suitable prodrugs, and summarizes the current biological data.  相似文献   

9.
5-Fluoro-2'-deoxyuridine incorporation in L1210 DNA   总被引:3,自引:0,他引:3  
We have employed cesium sulfate density gradient centrifugation to separate RNA and DNA of L1210 cells labeled with [3H]fluorodeoxyuridine. We have analyzed nucleotide and nucleoside digests of purified DNA from the [3H]fluorodeoxyuridine-labeled cells and demonstrate by reverse phase and anion exchange high pressure liquid chromatography the presence of tritium radioactivity co-migrating with fluorodeoxyuridine 5'-monophosphate or fluorodeoxyuridine. These observations demonstrate the internucleotide incorporation of fluorodeoxyuridine in DNA and suggest a new mechanism of action for this cytotoxic and mutagenic agent.  相似文献   

10.
Greco NJ  Tor Y 《Nature protocols》2007,2(2):305-316
We describe procedures for the synthesis of a fluorescent pyrimidine analog and its site-specific incorporation into a DNA oligomer. The 5'-protected and 3'-activated nucleoside 4 is synthesized in three steps with an overall yield of 40%. Site-specific incorporation into a DNA oligomer occurs with greater than 88% coupling efficiency. This isosteric fluorescent DNA analog can be used to monitor denaturation of DNA duplexes via fluorescence and can positively detect the presence of abasic sites in DNA duplexes. The total time for synthesis of the phosphoramidite 4 is about 75 h, whereas the total time for site-specific incorporation of nucleoside 2 into an oligonucleotide and purification of the corresponding oligonucleotide is about 114 hours.  相似文献   

11.
Fyrberg A  Lotfi K 《Cytotechnology》2010,62(6):497-507
In order to study nucleoside analog activation in the CEM cell line, a transfection protocol had to be optimized in order to silence an enzyme involved in nucleoside analog activation. Hematopoetic cell lines can be difficult to transfect with traditional lipid-based transfection, so the electroporation technique was used. Field strength, pulse length, temperature, electroporation media, siRNA concentration, among other conditions were tested in order to obtain approximately 70–80% mRNA and enzyme activity downregulation of the cytosolic enzyme deoxycytidine kinase (dCK), necessary for nucleoside analog activation. Downregulation was assessed at mRNA and enzyme activity levels. After optimizing the protocol, a microarray analysis was performed in order to investigate whether the downregulation was specific. Additionally two genes were differentially expressed besides the downregulation of dCK. These were however of unknown function. The leakage of intracellular nucleotides was also addressed in the electroporated cells since it can affect the DNA repair mechansism and the efficiency of nucleoside analogs. Three of these pools were increased compared to untreated, unelectroporated cells. The siRNA transfected cells with reduced dCK expression and activity showed reduced sensitivity to several nucleoside analogs as expected. The multidrug resistance to other drugs, as seen in nucleoside analog-induced resistant cells, was not seen with this model.  相似文献   

12.
beta-l-Dioxolane-cytidine (l-OddC, BCH-4556, Troxacitabine) is a novel unnatural stereochemical nucleoside analog that is under phase II clinical study for cancer treatment. This nucleoside analog could be phosphorylated and subsequently incorporated into the 3' terminus of DNA. The cytotoxicity of l-OddC was correlated with the amount of l-OddCMP in DNA, which depends on the incorporation by DNA polymerases and the removal by exonucleases. Here we reported the purification and identification of the major enzyme that could preferentially remove l-OddCMP compared with dCMP from the 3' termini of DNA in human cells. Surprisingly, this enzyme was found to be apurinic/apyrimidinic endonuclease (APE1) (), a well characterized DNA base excision repair protein. APE1 preferred to remove l- over d-configuration nucleosides from 3' termini of DNA. The efficiency of removal of these deoxycytidine analogs were as follows: l-OddC > beta-l-2',3'-dideoxy-2', 3'-didehydro-5-fluorocytidine > beta-l-2',3'-dideoxycytidine > beta-l-2',3'-dideoxy-3'-thiocytidine > beta-d-2',3'-dideoxycytidine > beta-d-2',2'-difluorodeoxycytidine > beta-d-2'-deoxycytidine >/= beta-d-arabinofuranosylcytosine. This report is the first demonstration that an exonuclease can preferentially excise l-configuration nucleoside analogs. This discovery suggests that APE1 could be critical for the activity of l-OddC or other l-nucleoside analogs and may play additional important roles in cells that were not previously known.  相似文献   

13.
Rotation of a heterocyclic base around a glycosidic bond allows the formation of syn and anti conformations in nucleosides. The syn conformation has been observed primarily in purine-purine mismatches in DNA duplexes. Such mismatches give rise to false positive oligonucleotide hybridization in DNA-based diagnostics. Here we describe the synthesis of an analog of 2'-deoxyadenosine that retains its Watson-Crick functional groups, but cannot form the syn conformation. In this analog, the N3 atom of 2'-deoxyadenosine is replaced by a C-CH3 group to give 7-methyl-1-beta-D-deoxyribofuranosyl-1H-imidazo[4,5-c]pyridin-4-ylamine or 3-methyl-3-deaza-2'-deoxyadenosine (3mddA). This modification sterically prevents the syn conformation and 3mddA becomes an anti-fixed nucleoside analog of 2'-deoxyadenosine. The synthesis and conformational analysis of 3mddA and several analogs with an 3H-imidazo[4,5-c]pyridine skeleton are described, as well as their potential applications.  相似文献   

14.
Abstract

During the last few years, many gene therapy strategies have been developed for various disease targets. The development of anticancer gene therapy strategies to selectively generate cytotoxic nucleoside or nucleotide analogs is an attractive goal. One such approach involves the delivery of herpes simplex virus thymidine kinase followed by the acyclic nucleoside analog ganciclovir. We have developed another gene therapy methodology for the treatment of cancer that has several significant attributes. Specifically, our approach involves the delivery of E. coli purine nucleoside phosphorylase, followed by treatment with a relatively non-toxic nucleoside prodrug that is cleaved by the enzyme to a toxic compound. This presentation describes the concept, details our search for suitable prodrugs, and summarizes the current biological data.  相似文献   

15.
Two novel C-linked oxadiazole carboxamide nucleosides 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-5-carboxamide (1) and 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-3-carboxamide (2) were successfully synthesized and characterized by X-ray crystallography. The crystallographic analysis shows that both unnatural nucleoside analogs 1 and 2 adapt the C2'-endo ("south") conformation. The orientation of the oxadiazole carboxamide nucleobase moiety was determined as anti (conformer A) and high anti (conformer B) in the case of the nucleoside analog 1 whereas the syn conformation is adapted by the unnatural nucleoside 2. Furthermore, nucleoside analogs 1 and 2 were converted with high efficiency to corresponding nucleoside triphosphates through the combination chemo-enzymatic approach. Oxadiazole carboxamide deoxyribonucleoside analogs represent valuable tools to study DNA polymerase recognition, fidelity of nucleotide incorporation, and extension.  相似文献   

16.
Template-primer analogs as substrates for DNA polymerase.   总被引:1,自引:0,他引:1  
T R Webb  P Jhurani    P G Ng 《Nucleic acids research》1987,15(10):3997-4006
  相似文献   

17.
18.
Seven herpes simplex virus mutants which have been previously shown to be resistant to arabinosyladenine were examined for their sensitivities to four types of antiviral drugs. These drugs were a pyrophosphate analog, four nucleoside analogs altered in their sugar moieties, two nucleoside analogs altered in their base moieties, and one altered in both. The seven mutants exhibited five distinct phenotypes based on their sensitivities to the drugs relative to wild-type strain KOS. All mutants exhibited resistance to acyclovir and arabinosylthymine, as well as marginal resistance to iododeoxyuridine, whereas all but one exhibited resistance to phosphonoformic acid. The mutants exhibited either sensitivity or hypersensitivity to other drugs tested--2'-nor-deoxyguanosine, 5-methyl-2'-fluoroarauracil, 5-iodo-2'-fluoroarauracil, and bromovinyldeoxyuridine--some of which differed only slightly from drugs to which the mutants were resistant. These results suggest ways to detect and treat arabinosyladenine-resistant isolates in the clinic. Antiviral hypersensitivity was a common phenotype. Mutations conferring hypersensitivity to 2'-nor-deoxyguanosine in mutant PAAr5 and to bromovinyldeoxyridine in mutant tsD9 were mapped to nonoverlapping regions of 1.1 and 0.8 kilobase pairs, respectively, within the herpes simplex virus DNA polymerase locus. Thus, viral DNA polymerase mediates sensitivity to these two drugs. However, we could not confirm reports of mutations in the DNA polymerase locus conferring resistance to these two drugs. All of the mutants exhibited altered sensitivity to two or more types of drugs, suggesting that single mutations affect recognition of the base, sugar, and triphosphate moieties of nucleoside triphosphates by viral polymerase.  相似文献   

19.
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.  相似文献   

20.
Several of the nucleoside analogs used in the treatment of AIDS exhibit a delayed clinical toxicity limiting their usefulness. The toxicity of nucleoside analogs may be related to their effects on the human mitochondrial DNA polymerase (Pol gamma), the polymerase responsible for mitochondrial DNA replication. Among the AIDS drugs approved by the FDA for clinical use, two are modified cytosine analogs, Zalcitabine (2',3'-dideoxycytidine (ddC)) and Lamivudine (beta-d-(+)-2',3'-dideoxy-3'-thiacytidine ((-)3TC])). (-)3TC is the only analog containing an unnatural l(-) nucleoside configuration and is well tolerated by patients even after long term administration. In cell culture (-)3TC is less toxic than its d(+) isomer, (+)3TC, containing the natural nucleoside configuration, and both are considerably less toxic than ddC. We have investigated the mechanistic basis for the differential toxicity of these three cytosine analogs by comparing the effects of dideoxy-CTP), (+)3TC-triphosphate (TP), and (-)3TC-TP on the polymerase and exonuclease activities of recombinant human Pol gamma. This analysis reveals that Pol gamma incorporates (-)3TC-triphosphate 16-fold less efficiently than the corresponding (+)isomer and 1140-fold less efficiently than dideoxy-CTP, showing a good correlation between incorporation rate and toxicity. The rates of excision of the incorporated analogs from the chain-terminated 3'-end of the DNA primer by the 3'-5'-exonuclease activity of Pol gamma were similar (0.01 s(-)1) for both 3TC analogs. In marked contrast, the rate of exonuclease removal of a ddC chain-terminated DNA occurs at least 2 orders of magnitude slower, suggesting that the failure of the exonuclease to remove ddC may play a major role in its greater toxicity. This study demonstrates that direct analysis of the mitochondrial DNA polymerase structure/function relationships may provide valuable insights leading to the design of less toxic inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号