首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.  相似文献   

2.
Puan KJ  Wang H  Dairi T  Kuzuyama T  Morita CT 《FEBS letters》2005,579(17):3802-3806
Although flavodoxin I is indispensable for Escherichia coli growth, the exact pathway(s) where flavodoxin I is essential has not been identified. We performed transposon mutagenesis of the flavodoxin I gene, fldA, in an E. coli strain that expressed mevalonate pathway enzymes and that had a point mutation in the lytB gene of the MEP pathway resulting in the accumulation of (E)-4-hydroxy-3-methylbutyl-2-enyl pyrophosphate (HMBPP). Disruption of fldA abrogated mevalonate-independent growth and dramatically decreased HMBPP levels. The fldA- mutant grew with mevalonate indicating that the essential role of flavodoxin I under aerobic conditions is in the MEP pathway. Growth was restored by fldA complementation. Since GcpE (which synthesizes HMBPP) and LytB are iron-sulfur enzymes that require a reducing system for their activity, we propose that flavodoxin is essential for GcpE and possibly LytB activity. Thus, the essential role for flavodoxin I in E. coli is in the MEP pathway for isoprenoid biosynthesis.  相似文献   

3.
The mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in many eubacteria, plants, and the malaria parasite. Using genetically engineered Escherichia coli cells able to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway we demonstrate that the lytB gene is involved in the trunk line of the MEP pathway. Cells deleted for the essential lytB gene were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of lytB.  相似文献   

4.
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in most eubacteria and plants and has remarkable biotechnological interest. However, only the first steps of this pathway have been determined. Using bioinformatic and genetic approaches, we have identified gcpE as a novel gene of the MEP pathway. The distribution of this gene in bacteria and plants strictly parallels that of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, which catalyses the first committed step of the MEP pathway. Our data demonstrate that the gcpE gene is essential for the MEP pathway in Escherichia coli and indicate that this gene is required for the trunk line of the isoprenoid biosynthetic route.  相似文献   

5.
Higher plants, several algae, bacteria, some strains of Streptomyces and possibly malaria parasite Plasmodium falciparum contain the novel, plastidic DOXP/MEP pathway for isoprenoid biosynthesis. This pathway, alternative with respect to the classical mevalonate pathway, starts with condensation of pyruvate and glyceraldehyde-3-phosphate which yields 1-deoxy-D-xylulose 5-phosphate (DOXP); the latter product can be converted to isopentenyl diphosphate (IPP) and eventually to isoprenoids or thiamine and pyridoxal. Subsequent reactions of this pathway involve transformation of DOXP to 2-C-methyl-D-erythritol 4-phosphate (MEP) which after condensation with CTP forms 4-diphosphocytidyl-2-amethyl-D-erythritol (CDP-ME). Then CDP-ME is phosphorylated to 4-diphosphocytidyl-2-amethyl-D-erythritol 2-phosphate (CDP-ME2P) and to 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (ME-2,4cPP) which is the last known intermediate of the DOXP/MEP pathway. For- mation of IPP and dimethylallyl diphosphate (DMAPP) from ME-2,4cPP still requires clarification. This novel pathway appears to be involved in biosynthesis of carotenoids, phytol (side chain of chlorophylls), isoprene, mono-, di-, tetraterpenes and plastoquinone whereas the mevalonate pathway is responsible for formation of sterols, sesquiterpenes and triterpenes. Several isoprenoids were found to be of mixed origin suggesting that some exchange and/or cooperation exists between these two pathways of different biosynthetic origin. Contradictory results described below could indicate that these two pathways are operating under different physiological conditions of the cell and are dependent on the developmental state of plastids.  相似文献   

6.
Recombinant LytB protein from the thermophilic eubacterium Aquifex aeolicus produced in Escherichia coli was purified to apparent homogeneity. The purified LytB protein catalyzed the reduction of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) in a defined in vitro system. The reaction products were identified as isopentenyl diphosphate and dimethylallyl diphosphate. A spectrophotometric assay was established to determine the steady-state kinetic parameters of LytB protein. The maximal specific activity of 6.6+/-0.3 micromol x min(-1) x mg(-1) protein was determined at pH 7.5 and 60 degrees C. The k(cat) value of the LytB protein was 3.7+/-0.2 s(-1) and the K(m) value for HMBPP was 590+/-60 microM.  相似文献   

7.
Gamma delta intraepithelial lymphocytes are thought to coordinate responses to pathogens that penetrate the epithelial barrier. To directly test this, mice were inoculated with Nocardia asteroides. At doses that were nonlethal for control mice, gamma delta-deficient mice became severely ill and died within 14 days. Histologic examination of these lungs demonstrated the presence of severe tissue damage and unimpeded bacterial growth in the gamma delta-deficient mice compared with neutrophilic lesions and clearance of the organism in control mice. Interestingly, ozone exposure that targets a comparable lung region also resulted in diffuse epithelial necrosis associated with a similar lack of neutrophil recruitment in gamma delta-deficient mice. These data demonstrate that gamma delta intraepithelial lymphocytes can protect the host from pathogenic and nonpathogenic insults by targeting the inflammatory response to epithelial necrosis.  相似文献   

8.
It has not been resolved whether gammadelta T cells can collaborate with germinal center B cells and support Ig hypermutation during an Ab response to a truly defined T-dependent Ag. In this study, we show that in the absence of alphabeta T cells, immunization with the well-defined T-dependent Ag, (4-hydroxy-3-nitrophenyl) acetyl (NP) conjugate, was able to induce Ig hypermutation. However, the clonotypes of B cells responding to NP were dramatically altered in TCR beta(-/-) mice. Unlike B cells in wild-type mice that use canonical VDJ rearrangements, most NP-responding B cells in mutant mice use analog genes of the J558 gene family. In addition, the majority of anti-NP Abs produced in mutant mice use kappaL chain instead of lambda1L chain, which dominates in mice of Igh(b) background. Thus, the B cell population that collaborates with gammadelta T cells is distinct from B cells interacting with conventional alphabeta Th cells.  相似文献   

9.
Thymic stromal lymphopoietin (TSLP) is a cytokine that promotes CD4(+) T cell homeostasis and contributes to allergic and inflammatory responses. TSLP can act directly on mouse CD4(+) T cells, but in humans, the available data have indicated that TSLP receptors are not expressed on CD4(+) T cells and that TSLP instead activates dendritic cells, which in turn promote the proliferation and differentiation of CD4(+) T cells. We now unexpectedly demonstrate the presence of TSLP receptors on activated human CD4(+) T cells. Strikingly, whereas freshly isolated peripheral blood human T cells show little if any response to TSLP, TCR stimulation allows a potent response to this cytokine. Moreover, TSLP increases the sensitivity of human CD4(+) T cells to low doses of IL-2, augmenting responsiveness of these cells to TCR engagement. Our results establish that human CD4(+) T cells are direct targets for TSLP.  相似文献   

10.
Extraction and purification from the biomass of Corynebacterium ammoniagenes of 2-C-methyl-D-erhythritol 2,4-cyclopyrophosphate (MEC) was associated with its spontaneous transformation into a number of derivatives (which was due to pyrophosphate bond lability and the formation of complexes with metals). These derivatives included 1,2-cyclophospho-4-phosphate, 2,4-diphosphate, 2,3-cyclophosphate, 1,4-diphosphate, and 3,5-diphosphate (identified by 1H, 31P, and 13C NMR spectroscopy) and accounted for about 10% MEC. When added to a solution of DNA in the presence of the Fenton reagent, MEC prevented DNA decomposition. In addition, MEC slowed down the interaction of the reagent with tempol radicals, which indicates that complexation of ferrous ions by MEC attenuates their ability to catalyze the formation of hydroxyl radicals from hydrogen peroxide. In the presence of 0.23 mM MEC, the rate of respiration of rat liver mitochondria increased 1.8 times. At 0.1-1.0 mM, MEC activated in vitro proliferation of human Vgamma9 T-cells. It is suggested that MEC acts as an endogenous stabilizing agent for bacterial cells subjected to oxidative stress and as an immunomodulator for eukaryotic hosts.  相似文献   

11.
The isoprenoid biosynthesis pathway provides the cell with a variety of compounds which are involved in multiple cellular processes. Inhibition of this pathway with statins and bisphosphonates is widely applied in the treatment of hypercholesterolemia and metabolic bone disease, respectively. In addition, since isoprenylation of proteins is an important therapeutic target in cancer research there is interest in interfering with isoprenoid biosynthesis, for which new inhibitors to block farnesylation and geranylgeranylation of small GTPases are being developed. We recently developed a sensitive method using UPLC-MS/MS that allows the direct detection and quantification of all intermediates of the mevalonate pathway from MVA to GGPP which can be used to verify the specificity of inhibitors of the isoprenoid biosynthesis pathway. We here investigated the specificity of several inhibitors of the isoprenoid biosynthesis pathway in HepG2 cells, fibroblasts and lymphoblasts. The nitrogen-containing bisphosphonates pamidronate and zoledronate specifically inhibit farnesyl pyrophosphate synthase indicated by the accumulation of IPP/DMAPP. However, zaragozic acid A, a squalene synthase inhibitor, causes an increase of MVA in addition to the expected increase of FPP. Analysis of isoprenoid intermediate profiles after incubation with 6-fluoromevalonate showed a very nonspecific result with an increase in MVA, MVAP, MVAPP and IPP/DMAPP. These results show that inhibitors of a particular enzyme of the isoprenoid biosynthesis pathway can have additional effects on other enzymes of the pathway either direct or indirect through accumulation of isoprenoid intermediates. Our method can be used to test new inhibitors and their effect on overall isoprenoid biosynthesis.  相似文献   

12.
The binding of a T cell to an Ag-laden dendritic cell (DC) is a critical step of the acquired immune response. Herein, we address whether a DC-produced chemokine can induce the arrest of T cells on DC under dynamic flow conditions. Ag-primed T cells and a T cell line were observed to rapidly ( approximately 0.5 s) bind to immobilized DC at low shear stress (0.1-0.2 dynes/cm(2)) in a pertussis toxin-sensitive fashion. Quantitatively, Ag-primed T cells displayed 2- to 3-fold enhanced binding to DC compared with unprimed T cells (p < 0.01). In contrast to naive T cells, primed T cell arrest was largely inhibited by pertussis toxin, neutralization of the CC chemokine, macrophage-derived chemokine (CCL22), or by desensitization of the CCL22 receptor, CCR4. Our results demonstrate that DC-derived CCL22 induces rapid binding of activated T cells under dynamic conditions and that Ag-primed and naive T cells fundamentally differ with respect to chemokine-dependent binding to DC.  相似文献   

13.
Cutting edge: suppression of T cell chemotaxis by sphingosine 1-phosphate   总被引:7,自引:0,他引:7  
Murine CD4 and CD8 T cells express predominantly types 1 and 4 sphingosine 1-phosphate (S1P) G protein-coupled receptors (designated S1P1 and S1P4 or previously endothelial differentiation gene-encoded 1 and 6) for S1P, which has a normal plasma concentration of 0.1-1 microM. S1P now is shown to enhance chemotaxis of CD4 T cells to CCL-21 and CCL-5 by up to 2.5-fold at 10 nM to 0.1 microM, whereas 0.3-3 microM S1P inhibits this chemotaxis by up to 70%. Chemotaxis of S1P(1), but not S1P(4), transfectants to CXCL1 and CXCL4 was similarly affected by S1P. Activation of CD4 T cells, which decreases S1P receptor expression, suppressed effects of S1P on chemotaxis. Pretreatment of labeled CD4 T cells with S1P before reintroduction into mice inhibited by a maximum of 75% their migration into chemokine-challenged s.c. air pouches. The S1P-S1P(1) receptor axis thus controls recruitment of naive T cells by maintaining their response threshold to diverse lymphotactic factors.  相似文献   

14.
Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses.  相似文献   

15.
We report that NF-AT1 and NF-AT4 are expressed cytoplasmically in resting eosinophils, whereas NF-AT2 and NF-AT3 have not been seen. Likewise, NF-AT1 mRNA and NF-AT4 mRNA have been detected in resting eosinophils, and their levels can be significantly up-regulated by the Th2-associated cytokines IL-4 and IL-5. There is no detectable NF-AT protein expression in the nuclei of resting eosinophils. However NF-ATs appear in the nuclei of IL-4-, IL-5-, or ionomycin-stimulated eosinophils. Only NF-AT1 and NF-AT4, but not NF-AT2 and NF-AT3, have translocated into the nuclei in IL-4- or IL-5-stimulated eosinophils. These findings delineate a novel pathway in the cytokine network in which Th2 lymphocytes "control" eosinophils via the release of IL-4 and IL-5, and activation of NF-AT in eosinophils. The findings also suggest that a later feedback "talking" may exist between eosinophils and Th2 lymphocytes.  相似文献   

16.
Cutting edge: Rac GTPases sensitize activated T cells to die via Fas   总被引:1,自引:0,他引:1  
In activated CD4(+) T cells, TCR restimulation triggers apoptosis that depends on interactions between the death receptor Fas and its ligand, FasL. This process, termed restimulation-induced cell death (RICD), is a mechanism of peripheral immune tolerance. TCR signaling sensitizes activated T cells to Fas-mediated apoptosis, but what pathways mediate this process are not known. In this study we identify the Rho GTPases Rac1 and Rac2 as essential components in restimulation-induced cell death. RNA interference-mediated knockdown of Rac GTPases greatly reduced Fas-dependent, TCR-induced apoptosis. The ability of Rac1 to sensitize T cells to Fas-induced apoptosis correlated with Rac-mediated cytoskeletal reorganization, dephosphorylation of the ERM (ezrin/radixin/moesin) family of cytoskeletal linker proteins, and the translocation of Fas to lipid raft microdomains. In primary activated CD4(+) T cells, Rac1 and Rac2 were independently required for maximal TCR-induced apoptosis. Activating Rac signaling may be a novel way to sensitize chronically stimulated lymphocytes to Fas-induced apoptosis, an important goal in the treatment of autoimmune diseases.  相似文献   

17.
Withania somnifera (L.) is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicines. Pharmaceutical activities of this herb are associated with presence of secondary metabolites known as withanolides, a class of phytosteroids synthesized via mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate pathways. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the genes responsible for biosynthesis of these compounds. In this study, we have characterized two genes encoding 1-deoxy-d-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7) and 1-deoxy-d-xylulose-5-phosphate reductase (DXR; EC 1.1.1.267) enzymes involved in the biosynthesis of isoprenoids. The full-length cDNAs of W. somnifera DXS (WsDXS) and DXR (WsDXR) of 2,154 and 1,428 bps encode polypeptides of 717 and 475 amino acids residues, respectively. The expression analysis suggests that WsDXS and WsDXR are differentially expressed in different tissues (with maximal expression in flower and young leaf), chemotypes of Withania, and in response to salicylic acid, methyl jasmonate, as well as in mechanical injury. Analysis of genomic organization of WsDXS shows close similarity with tomato DXS in terms of exon–intron arrangements. This is the first report on characterization of isoprenoid biosynthesis pathway genes from Withania.  相似文献   

18.
Human Valpha24(+) NKT cells constitute a counterpart of mouse Valpha14(+) NKT cells, both of which use an invariant TCR-alpha chain. The human Valpha24(+) NKT cells as well as mouse Valpha14(+) NKT cells are activated by glycolipids in a CD1d-restricted manner and produce many immunomodulatory cytokines, possibly affecting the immune balance. In mice, it has been considered from extensive investigations that Valpha14(+)CD8(+) NKT cells that express invariant TCR do not exist. Here we introduce human Valpha24(+)CD8(+) NKT cells. These cells share important features of Valpha24(+) NKT cells in common, but in contrast to CD4(-)CD8(-) (double-negative) or CD4(+) Valpha24(+) NKT cells, they do not produce IL-4. Our discovery may extend and deepen the research field of Valpha24(+) NKT cells as well as help to understand the mechanism of the immune balance-related diseases.  相似文献   

19.
Tuberculosis is one of the leading infectious diseases in humans. Discovering new treatments for this disease is urgently required, especially in view of the emergence of multiple drug resistant organisms and to reduce the total duration of current treatments. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target, and particular attention has been focused on the methylerythritol phosphate (MEP) pathway comprising the early steps of isoprenoid biosynthesis. In this context we have studied the enzyme 2C-methyl-d-erythritol-4-phosphate cytidylyltransferase (CMS), the third enzyme in the MEP pathway, since the lack of a resolved structure of this protein in M. tuberculosis has seriously limited its use as a drug target. We performed homology modeling of M. tuberculosis CMS in order to provide a reliable model for use in structure-based drug design. After evaluating the quality of the model, we performed a thorough study of the catalytic site and the dimerization interface of the model, which suggested the most important sites (conserved and non-conserved) that could be useful for drug discovery and mutagenesis studies. We found that the metal coordination of CDP-methylerythritol in M. tuberculosis CMS differs substantially with respect to the Escherichia coli variant, consistent with the fact that the former is able to utilize several metal ions for catalysis. Moreover, we propose that electrostatic interactions could explain the higher affinity of the MEP substrate compared with the cytosine 5′-triphosphate substrate in the M. tuberculosis enzyme as reported previously.  相似文献   

20.
KIR2DL4 (2DL4, CD158d), a member of the human killer cell Ig-like receptor (KIR) family, triggers potent IFN-gamma responses but weak cytotoxicity in resting NK cells. 2DL4 mRNA has been detected in most NK cell clones from most humans examined, but surface protein expression is detectable only on CD56(high) NK cells from certain donors. The receptor possesses a transmembrane arginine residue, suggesting association with a signaling accessory protein that has remained elusive. We provide biochemical and functional evidence that FcepsilonRI-gamma (gamma) associates with 2DL4 to promote surface expression and provide signal transducing function. Weak cytolytic responses triggered through 2DL4 may result from low stoichiometric association with gamma. Selective association with gamma distinguishes 2DL4 from all other activating forms of the KIR family, which alternatively associate with DNAX-activating protein (DAP)12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号