首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NSAIDs displayed chemopreventive and anticancer effects against several types of cancers. Moreover, combination of NSAIDs with anticancer agents resulted in enhanced anticancer activity. These findings have attracted much attention of researchers working in this field. The 2-arylpropionic acid-derived NSAIDs represent one of the most widely used anti-inflammatory agents. Additionally, they displayed antiproliferative activities against different types of cancer cells. Large volume of research was performed to identify molecular targets responsible for this activity. However, the exact mechanism underlying the anticancer activity of profens is still unclear. In this review article, the anticancer potential, structure activity relationship and synthesis of selected profen derivatives were summarized. This review is focused also on non-COX targets which can mediate the anticancer activity of this derivatives. The data in this review highlighted profens as promising lead compounds in future research to develop potent and safe anticancer agents.  相似文献   

2.
Nelfinavir is a potent HIV-protease inhibitor with pleiotropic effects in cancer cells. Experimental studies connect its anti-cancer effects to the suppression of the Akt signaling pathway, but the actual molecular targets remain unknown. Using a structural proteome-wide off-target pipeline, which integrates molecular dynamics simulation and MM/GBSA free energy calculations with ligand binding site comparison and biological network analysis, we identified putative human off-targets of Nelfinavir and analyzed the impact on the associated biological processes. Our results suggest that Nelfinavir is able to inhibit multiple members of the protein kinase-like superfamily, which are involved in the regulation of cellular processes vital for carcinogenesis and metastasis. The computational predictions are supported by kinase activity assays and are consistent with existing experimental and clinical evidence. This finding provides a molecular basis to explain the broad-spectrum anti-cancer effect of Nelfinavir and presents opportunities to optimize the drug as a targeted polypharmacology agent.  相似文献   

3.
Kim MK  Kim K  Han JY  Lim JM  Song YS 《Genes & nutrition》2011,6(2):109-115
Inflammation has been suggested to be involved in cancer development and progression. Many clinical and experimental studies have shown that inflammation could contribute to ovarian carcinogenesis through activation of the NF-κB and AP-1 pathways by chronic inflammatory mediators. Phytochemicals, which are natural compounds derived from fruits and vegetables, have shown anti-inflammatory and anti-cancer effects. Due to their relatively low toxicity and easy accessibility, phytochemicals have been investigated for their chemopreventive potential against various cancers. In this review, we discuss the role of phytochemicals in preventing ovarian cancer through anti-inflammatory mechanisms.  相似文献   

4.
Inflammation is thought to play a role in the pathophysiology of cancer. Accumulating evidence from clinical and laboratory-based studies suggests that substances with anti-inflammatory activities are potential candidates for chemoprevention. Recent advances in cellular and molecular biology of cancer shed light on components of intracellular signaling cascades that can be potential molecular targets of chemoprevention with various anti-inflammatory substances. Although cyclooxygenase-2, a primary enzyme that mediates inflammatory responses, has been well recognized as a molecular target for chemoprevention by both synthetic and natural anti-inflammatory agents, the cellular signaling mechanisms that associate inflammation and cancer are not still clearly illustrated. Recent studies suggest that β-catenin-mediated signaling, which regulates developmental processes, may act as a potential link between inflammation and cancer. This review aims to focus on β-catenin-mediated signaling pathways, particularly in relation to its contribution to carcinogenesis, and the modulation of inappropriately activated β-catenin-mediated signaling by nonsteroidal anti-inflammatory drugs and chemopreventive phytochemicals possessing anti-inflammatory properties.  相似文献   

5.
Inflammation is thought to play a role in the pathophysiology of cancer. Accumulating evidence from clinical and laboratory-based studies suggests that substances with anti-inflammatory activities are potential candidates for chemoprevention. Recent advances in cellular and molecular biology of cancer shed light on components of intracellular signaling cascades that can be potential molecular targets of chemoprevention with various anti-inflammatory substances. Although cyclooxygenase-2, a primary enzyme that mediates inflammatory responses, has been well recognized as a molecular target for chemoprevention by both synthetic and natural anti-inflammatory agents, the cellular signaling mechanisms that associate inflammation and cancer are not still clearly illustrated. Recent studies suggest that beta-catenin-mediated signaling, which regulates developmental processes, may act as a potential link between inflammation and cancer. This review aims to focus on beta-catenin-mediated signaling pathways, particularly in relation to its contribution to carcinogenesis, and the modulation of inappropriately activated beta-catenin-mediated signaling by nonsteroidal anti-inflammatory drugs and chemopreventive phytochemicals possessing anti-inflammatory properties.  相似文献   

6.
7.
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention.This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

8.
9.
Chemoprevention of cancer via herbal and dietary supplements is a logical approach to combating cancer and currently it is an attractive area of research investigation. Over the years, isothiocyanates, such as sulforaphane (SFN) found in cruciferous vegetables, have been advocated as chemopreventive agents, and their efficacy has been demonstrated in cell lines and animal models. In vivo studies with SFN suggest that in addition to protecting normal healthy cells from environmental carcinogens, it also exhibits cytotoxicity and apoptotic effects against various cancer cell types. Among several mechanisms for the chemopreventive activity of SFN against chemical carcinogenesis, its effect on drug-metabolizing enzymes that cause activation/neutralization of carcinogenic metabolites is well established. Recent studies suggest that SFN exerts its selective cytotoxicity to cancer cells via reactive oxygen species-mediated generation of lipid peroxidation products, particularly 4-hydroxynonenal (HNE). Against the background of the known biochemical effects of SFN on normal and cancer cells, in this article we review the underlying molecular mechanisms responsible for the overall chemopreventive effects of SFN, focusing on the role of HNE in these mechanisms, which may also contribute to its selective cytotoxicity to cancer cells.  相似文献   

10.
11.
Natural organosulfur compounds (OSCs) have been shown to have chemopreventive effects and to suppress the proliferation of tumor cells in vitro through the induction of apoptosis. The biochemical mechanisms underlying the antitumorigenic and anti-proliferative effects of garlic-derived OSCs are not fully understood. Several modes of action of these compounds have been proposed, and it seems likely that the rate of clearance of allyl sulfur groups from cells is a determinant of the overall response. The aim of this review is to focus attention on the effects of natural allyl sulfur compounds on the cell detoxification system in normal and tumor cells. It has been already reported that several natural allyl sulfur compounds induce chemopreventive effects by affecting xenobiotic metabolizing enzymes and inducing their down-activation. Moreover, different effects of water- and oil-soluble allyl sulfur compounds on enzymes involved in the detoxification system of rat tissues have been observed. A direct interaction of the garlic allyl sulfur compounds with proteins involved in the detoxification system was studied in order to support the hypothesis that proteins possessing reactive thiol groups and that are involved in the detoxification system and in the cellular redox homeostasis, are likely the preferential targets of these compounds. The biochemical transformation of the OSCs in the cell and their adducts with thiol functional groups of these proteins, could be considered relevant events to uncover the anticancer properties of the allyl sulfur compounds. Although additional studies, using proteomic approaches and transgenic models, are needed to identify the molecular targets and modes of action of these natural compounds, the allyl sulfur compounds can represent potential ideal agents in anticancer therapy, either alone or in association with other antitumor drugs.  相似文献   

12.
Cordycepin: A bioactive metabolite with therapeutic potential   总被引:1,自引:0,他引:1  
Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment.  相似文献   

13.
Carcinogenesis is a complex and multistep process that involves the accumulation of successive transformational events driven by genetic mutations and epigenetic alterations that affect major cellular processes and pathways such as proliferation, differentiation, invasion and survival. Massive deregulation of all components of the epigenetic machinery is a hallmark of cancer. These alterations affect normal gene regulation and impede normal cellular processes including cell cycle, DNA repair, cell growth, differentiation and apoptosis. Since epigenetic alterations appear early in cancer development and represent potentially initiating events during carcinogenesis, they are considered as promising targets for anti-cancer interventions by chemopreventive and chemotherapeutic strategies using epigenetically active agents. In this field, plant-derived compounds have shown promise. Here, we will give an overview of plant-derived compounds displaying anticancer properties that interfere with the epigenetic machinery.  相似文献   

14.
Breast cancer is one of the most common cancers among women and its incidence tends to increase year by year. Chemotherapy is an effective treatment for many types of cancer, however its toxicity in normal cells and acquired tumor resistance to the drug used are considered as the main barriers. New strategies have been proposed to increase the success of anticancer drugs namely it combination with natural dietary compounds, decreasing drug dose administered and reducing its toxicity to normal cells. Seaweeds are rich in bioactive compounds and, in Traditional Chinese Medicine and Japanese folk medicine are used to “treat” tumors. Attending to the attractive biological effects of some seaweed several efforts have been made to isolate the bioactive compounds and explore its action mechanisms. Phloroglucinol, fucoxanthin and fucoidan are bioactive compounds present in brown seaweed showing chemopreventive and chemotherapeutic effects against cancer. Several mechanisms namely antioxidant, cell cycle arrest, induction of cell death and inhibition of metastasis and angiogenesis have been mentioned as responsible for it anticancer activity. Beside the promising biological effects of these compounds, synergistic effects with cytotoxic drugs have been less explored. This review focuses on the potential protective and therapeutic effect – mainly against breast cancer – of the bioactive compounds phloroglucinol, fucoxanthin and fucoidan present in the brown seaweeds. Current knowledge about interaction between each of these compounds and the conventional anticancer drugs and the further research opportunities are discussed.  相似文献   

15.
Flavonoids, including isoflavones, are natural components in our diet and, with the burgeoning interest in alternative medicine, are increasingly being ingested by the general population. Plant phenolics, which form moieties on flavonoid rings, such as gallic acid, are also widely consumed. Several beneficial properties have been attributed to these dietary compounds, including antioxidant, anti-inflammatory, and anticarcinogenic effects. Flavonoid preparations are marketed as herbal medicines or dietary supplements for a variety of alleged nontoxic therapeutic effects. However, they have yet to pass controlled clinical trials for efficacy, and their potential for toxicity is an understudied field of research. This review summarizes the current knowledge regarding potential dietary flavonoid/phenolic-induced toxicity concerns, including their pro-oxidant activity, mitochondrial toxicity (potential apoptosis-inducing properties), and interactions with drug-metabolizing enzymes. Their chemopreventive activity in animal in vivo experiments may result from their ability to inhibit phase I and induce phase II carcinogen metabolizing enzymes that initiate carcinogenesis. They also inhibit the promotion stage of carcinogenesis by inhibiting oxygen radical-forming enzymes or enzymes that contribute to DNA synthesis or act as ATP mimics and inhibit protein kinases that contribute to proliferative signal transduction. Finally, they may prevent tumor development by inducing tumor cell apoptosis by inhibiting DNA topoisomerase II and p53 downregulation or by causing mitochondrial toxicity, which initiates mitochondrial apoptosis. While most flavonoids/phenolics are considered safe, flavonoid/phenolic therapy or chemopreventive use needs to be assessed as there have been reports of toxic flavonoid-drug interactions, liver failure, contact dermatitis, hemolytic anemia, and estrogenic-related concerns such as male reproductive health and breast cancer associated with dietary flavonoid/phenolic consumption or exposures.  相似文献   

16.
17.
Lung cancer continues to be the leading cause of cancer deaths throughout the world and conventional therapy remains largely unsuccessful. Although, chemoprevention is a plausible alternative approach to curb the lung cancer epidemic, clinically there are no effective chemopreventive agents. Thus, development of novel compounds that can target cellular and molecular pathways involved in the multistep carcinogenesis process is urgently needed. Previous studies have suggested that substitution of sulfur by selenium in established cancer chemopreventive agents may result in more effective analogs. Thus in the present study we selected the chemopreventive agent S,S′-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea (PBIT), also known to inhibit inducible nitric oxide synthase (iNOS), synthesized its selenium analog (Se-PBIT) and compared both compounds in preclinical model systems using non-small cell lung cancer (NSCLC) cell lines (NCI-H460 and A549); NSCLC is the most common histologic type of all lung cancer cases. Se-PBIT was found to be superior to PBIT as an inducer of apoptosis and inhibitor of cell growth. Se-PBIT arrested cell cycles at G1 and G2-M stage in both A549 and H460 cell lines. Although both compounds are weakly but equally effective inhibitors of iNOS protein expression and activity, only Se-PBIT significantly enhanced the levels of p53, p38, p27 and p21 protein expression, reduced levels of phospholipase A2 (PLA2) but had no effect on cyclooxygenase-2 (COX-2) protein levels; such molecular targets are involved in cell growth inhibition, induction of apoptosis and cell cycle regulation. The results indicate that Se-PBIT altered molecular targets that are involved in the development of human lung cancer. Although, the mechanisms that can fully account for these effects remain to be determined, the results are encouraging to further evaluate the chemopreventive efficacy of Se-PBIT against the development of NSCLC in a well-defined animal model.  相似文献   

18.
《Phytomedicine》2015,22(13):1163-1171
BackgroundDespite the major advances made in the field of cancer biology, it still remains one of the most fatal diseases in the world. It is now well established that natural products are safe and efficacious and have high potential in the prevention and treatment of different diseases including cancer. Butein is one such compound which is now found to have anti-cancer properties against various malignancies.PurposeTo thoroughly review the literature available on the anti-cancer properties of butein against different cancers and its molecular targets.MethodsA thorough literature search has been done in PubMed for butein, its biological activities especially cancer and its molecular targets.ResultsOur search retrieved several reports on the various biological activities of butein in which around 43 articles reported that butein shows potential anti-proliferative effect against a wide range of neoplasms and the molecular target varies with cancer types. Most often it targets NF-κB and its downstream pathways. In addition, butein induces the expression of genes which mediate the cell death and apoptosis in cancer cells. It also inhibits tumor angiogenesis, invasion and metastasis in prostate, liver and bladder cancers through the inhibition of MMPs, VEGF etc. Moreover, it inhibits the overexpression of several proteins and enzymes such as STAT3, ERK, CXCR4, COX-2, Akt, EGFR, Ras etc. involved in tumorigenesis.ConclusionCollectively, all these findings suggest the enormous potential and efficacy of butein as a multitargeted chemotherapeutic, chemopreventive and chemosensitizing agent against a wide range of cancers with minimal or no adverse side effects.  相似文献   

19.
With the dramatic increase in cancer incidence all over the world in the last decades, studies on identifying novel efficient anti-cancer agents have been intensified. Historically, natural products have represented one of the most important sources of new lead compounds with a wide range of biological activities. In this article, the multifaceted anti-cancer action of propolis-derived flavonoid, galangin, is presented, discussing its antioxidant, anti-inflammatory, antiproliferative, pro-apoptotic, anti-angiogenic, and anti-metastatic effects in various cancer cells. In addition, co-effects with standard chemotherapeutic drugs as well as other natural compounds are also under discussion, besides highlighting modern nanotechnological advancements for overcoming the low bioavailability issue characteristic of galangin. Although further studies are needed for confirming the anti-cancer potential of galangin in vivo malignant systems, exploring this natural compound might open new perspectives in molecular oncology.  相似文献   

20.
Shan T  Ma Q  Guo K  Liu J  Li W  Wang F  Wu E 《Current molecular medicine》2011,11(8):666-677
Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including antioxidant, anti- tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号