首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
Structural analysis of membrane-bound retrovirus capsid proteins.   总被引:5,自引:1,他引:4  
We have developed a system for analysis of histidine-tagged (His-tagged) retrovirus core (Gag) proteins, assembled in vitro on lipid monolayers consisting of egg phosphatidylcholine (PC) plus the novel lipid DHGN. DHGN was shown to chelate nickel by atomic absorption spectrometry, and DHGN-containing monolayers specifically bound gold conjugates of His-tagged proteins. Using PC + DHGN monolayers, we examined membrane-bound arrays of an N-terminal His-tagged Moloney murine leukemia virus (M-MuLV) capsid (CA) protein, His-MoCA, and in vivo studies suggest that in vitro-derived His-MoCA arrays reflect some of the Gag protein interactions which occur in assembling virus particles. The His-MoCA proteins formed extensive two-dimensional (2D) protein crystals, with reflections out to 9.5 A resolution. The image-analyzed 2D projection of His-MoCA arrays revealed a distinct cage-like network. The asymmetry of the individual building blocks of the network led to the formation of two types of hexamer rings, surrounding protein-free cage holes. These results predict that Gag hexamers constitute a retrovirus core substructure, and that cage hole sizes define an exclusion limit for entry of retrovirus envelope proteins, or other plasma membrane proteins, into virus particles. We believe that the 2D crystallization method will permit the detailed analysis of retroviral Gag proteins and other His-tagged proteins.  相似文献   

3.
An aptamer-based biochip for protein detection and quantitation which combines the recent biochip technology and the conventional staining methods, is described. Using a model system comprising His-tagged proteins as the analyte and single-stranded RNA aptamers specific for His-tagged proteins as immobilized ligands on chips, we could demonstrate that aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity, respectively. The sensor has the characteristics of good stability, reproducibility and reusability, with detection limit as low as 85 ng/mL His-tagged protein. It has been demonstrated that the sensor can be stored for at least 4 weeks and reused with reasonable reduction rate of staining intensity. In conclusion, we could show the suitability of nucleic acid aptamers as low molecular weight receptors on biochips for sensitive and specific protein detection and quantitation.  相似文献   

4.
Modification of the Escherichia coli 50S ribosomal subunit with histidine-specific diethyl pyrocarbonate affects peptide bond formation and release-factor-dependent peptidyl-tRNA hydrolysis. Unmodified L16 can restore activity to a split protein fraction from the altered subunit but other proteins of the core also contain histidine residues important for the activity of the peptidyltransferase centre. When isolated and purified by centrifugation, particles reconstituted with unmodified proteins and modified L16 do not retain the altered L16. The modified protein does mediate the partial restoration of peptide bond formation and release-factor-2 activities to these particles. It must be exerting its effect during the assembly of the peptidyltransferase centre in the reconstituted particle. A particle could be reconstituted which lacks L16 and has significant activity in peptide bond formation and peptidyl-tRNA hydrolysis. L16 stimulates these activities. A tighter ribosomal binding of the release factor 2, dependent upon the absence of protein L11, can in part compensate for the loss of activity of the peptidyltransferase centre when it is assembled with either modified L16 or in the absence of L16. The protein and its histidine residue seem important, therefore, for the peptidyltransferase centre to be formed in the correct conformation but not essential for activity once the centre is assembled.  相似文献   

5.
Extracellular matrix proteins (ECMs) play a significant role in the transfer of mechanical strain to monocyte-derived macrophages (MDMs) affecting morphological changes in a foreign body reaction. This study investigated how the functional responses of U937 macrophage-like cells differed when subjected to 2 dynamic strain types (nonuniform biaxial or uniform uniaxial strain) while cultured on siloxane membranes coated with either collagen type I or RGD peptide repeats (ProNectin). Biaxial strain caused an increase in intracellular esterase and acid phosphatase (AP) activities, as well as monocyte-specific esterase (MSE) protein levels in cells that were seeded on either uncoated surfaces (shown previously) or collagen, but not ProNectin. Released AP activity, but not released esterase activity, was increased on all surfaces. Biaxial strain increased IL-6, but not IL-8 on all surfaces. When cells were subjected to uniaxial strain, intracellular esterase increased on coated surfaces only, whereas intracellular AP activity was unaffected. Both esterase and AP released activities increased on all surfaces. Uniaxial strain increased the release of IL-6 on all surfaces, but IL-8 on coated surfaces only. This study demonstrated for the first time that ECM proteins could specifically modulate cellular responses to different types of strain. Using this approach with an in vitro cell system may help to unravel the complex function of MDMs in the foreign-body reaction.  相似文献   

6.
We are studying the structural proteins and molecular interactions required for formation and release of influenza virus-like particles (VLPs) from the cell surface. To investigate these events, we generated a quadruple baculovirus recombinant that simultaneously expresses in Sf9 cells the hemagglutinin (HA), neuraminidase (NA), matrix (M1), and M2 proteins of influenza virus A/Udorn/72 (H3N2). Using this quadruple recombinant, we have been able to demonstrate by double-labeling immunofluorescence that matrix protein (M1) localizes in nuclei as well as at discrete areas of the plasma membrane where HA and NA colocalize at the cell surface. Western blot analysis of cell supernatant showed that M1, HA, and NA were secreted into the culture medium. Furthermore, these proteins comigrated in similar fractions when concentrated supernatant was subjected to differential centrifugation. Electron microscopic examination (EM) of these fractions revealed influenza VLPs bearing surface projections that closely resemble those of wild-type influenza virus. Immunogold labeling and EM demonstrated that the HA and NA were present on the surface of the VLPs. We further investigated the minimal number of structural proteins necessary for VLP assembly and release using single-gene baculovirus recombinants. Expression of M1 protein alone led to the release of vesicular particles, which in gradient centrifugation analysis migrated in a similar pattern to that of the VLPs. Immunoprecipitation of M1 protein from purified M1 vesicles, VLPs, or influenza virus showed that the relative amount of M1 protein associated with M1 vesicles or VLPs was higher than that associated with virions, suggesting that particle formation and budding is a very frequent event. Finally, the HA gene within the quadruple recombinant was replaced either by a gene encoding the G protein of vesicular stomatitis virus or by a hybrid gene containing the cytoplasmic tail and transmembrane domain of the HA and the ectodomain of the G protein. Each of these constructs was able to drive the assembly and release of VLPs, although enhanced recruitment of the G glycoprotein onto the surface of the particle was observed with the recombinant carrying a G/HA chimeric gene. The described approach to assembly of wild-type and chimeric influenza VLPs may provide a valuable tool for further investigation of viral morphogenesis and genome packaging as well as for the development of novel vaccines.  相似文献   

7.
The virulence plasmid-encoded YadA of Yersinia enterocolitica serotype O:3 is a 430-amino-acid outer membrane protein, synthesized with a 25-amino-acid signal peptide. YadA forms homotrimeric surface structures that function as adhesin between bacteria and collagen as well as other host proteins. The structure-function relationships of YadA were studied, and the collagen-binding determinants of YadA were located to its amino-terminal half. Collagen did not bind to any of the overlapping 16-mer YadA peptides, indicating that the collagen binding site of YadA is conformational. Epitope mapping of YadA identified 12 linear antigenic epitopes altogether. Seven epitopes were uniquely recognized by an anti-YadA antiserum able to inhibit collagen binding. Four of these epitopes shared a motif NSVAIG-S that is repeated eight times within the N-terminal half of YadA. Site-directed mutagenesis showed that these motifs are absolutely required for YadA-mediated collagen binding, revealing a novel type of collagen-binding mechanism.  相似文献   

8.
The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.  相似文献   

9.
Using the two-hybrid technique we identified a novel protein whose N-terminal 88 amino acids (aa) interact with the C-terminal regulatory domain of the plasma membrane (PM) H+-ATPase from Arabidopsis thaliana (aa 847-949 of isoform AHA1). The corresponding gene has been named Ppi1 for Proton pump interactor 1. The encoded protein is 612 aa long and rich in charged and polar residues, except for the extreme C-terminus, where it presents a hydrophobic stretch of 24 aa. Several genes in the A. thaliana genome and many ESTs from different plant species share significant similarity (50-70% at the aa level over stretches of 200-600 aa) to Ppi1. The PPI1 N-terminus, expressed in bacteria as a fusion protein with either GST or a His-tag, binds the PM H+-ATPase in overlay experiments. The same fusion proteins and the entire coding region fused to GST stimulate H+-ATPase activity. The effect of the His-tagged peptide is synergistic with that of fusicoccin (FC) and of tryptic removal of a C-terminal 10 kDa fragment. The His-tagged peptide binds also the trypsinised H+-ATPase. Altogether these results indicate that PPI1 N-terminus is able to modulate the PM H+-ATPase activity by binding to a site different from the 14-3-3 binding site and is located upstream of the trypsin cleavage site.  相似文献   

10.
Our previous studies have shown that the His tag cleaved from fusion proteins contained two distinct components P1 and P2. P1 has been identified to be a His-tagged peptide of G-H-H-H-H-H-H-H-H-H-H-S-S-G-H-I-E-G-R resulted from initiator methionine deletion, and P2 contains an unknown moiety at the second residue glycine of the tag (x-G-H-H-H-H-H-H-H-H-H-H-S-S-G-H-I-E-G-R, x = 178.0 Da). This study aimed to determine the structure of the modification by using a combination of protein isotope labeling and mass spectrometry. His-tagged FKBP was expressed in (15)N and (13)C labeling growth media respectively. Isotopic labeled His-tagged proteins ((15)N-His-FKBP and (13)C-His-FKBP) were isolated by affinity chromatography and subjected to Xa digestions to release the labeled His tag. Subsequent analyses of the released His tag by MALDI-TOF-MS indicated a mass difference of 178.0 +/- 0.2 Da, between the two (15)N-labeled peptides P1 and P2, suggesting that the modification moiety contained no nitrogen. A mass difference of 184.0 +/- 0.2 Da was observed on MALDI between (13)C-labeled peptide P1 and P2, indicating six carbons in the modification group. Also, comparing the mass shift on MALDI spectra of P1 and P2 after hydrogen/deuterium exchange revealed that the modification moiety had five hydroxyl groups. It was concluded that the modification was a gluconic acid derivative attached to the N-terminus of His-tagged proteins expressed in bacteria. The proposed structure was further confirmed by MALDI analysis of periodate oxidation products of His-tagged peptides.  相似文献   

11.
The ubiquitous hexahistidine purification tag has been used to conjugate proteins to the shell of CdSe:ZnS quantum dots (QDs) due to its affinity for surface-exposed Zn2+ ions but little attention has been paid to the potential of His-tagged proteins for mineralizing luminescent ZnS nanocrystals. Here, we compare the ability of free histidine, a His tag peptide, His-tagged thioredoxin (TrxA, a monomeric protein), and N- and C-terminally His-tagged versions of Hsp31 (a homodimeric protein) to support the synthesis of Mn-doped ZnS nanocrystals from aqueous precursors under mild conditions of pH (8.2) and temperature (37 °C). We find that: (1) it is possible to produce poor quality QDs when histidine is used at high (8 mM) concentration; (2) an increase in local histidine concentration through repetition of the amino acid as a His tag decreases the amount of needed reagent ≈10-fold and improves optical properties; (3) fusion of the same His tag to TrxA allows for ZnS:Mn QDs mineralization at micromolar concentrations; and (4) doubling the local hexahistidine concentration by exploiting Hsp31 dimerization further improves nanocrystal luminescence with the brightest particles obtained when His tags are spatially co-localized at the Hsp31 N-termini. Although hexahistidine tracts are not as efficient as combinatorially selected ZnS binding peptides at QD synthesis, it should be possible to use the large number of available His-tagged proteins and the synthesis approach described herein to produce luminescent nanoparticles whose protein shell carries a broad range of functions.  相似文献   

12.
Designed armadillo repeat proteins (dArmRP) are α‐helical solenoid repeat proteins with an extended peptide binding groove that were engineered to develop a generic modular technology for peptide recognition. In this context, the term “peptide” not only denotes a short unstructured chain of amino acids, but also an unstructured region of a protein, as they occur in termini, loops, or linkers between folded domains. Here we report two crystal structures of dArmRPs, in complex with peptides fused either to the N‐terminus of Green Fluorescent Protein or to the C‐terminus of a phage lambda protein D. These structures demonstrate that dArmRPs bind unfolded peptides in the intended conformation also when they constitute unstructured parts of folded proteins, which greatly expands possible applications of the dArmRP technology. Nonetheless, the structures do not fully reflect the binding behavior in solution, that is, some binding sites remain unoccupied in the crystal and even unexpected peptide residues appear to be bound. We show how these differences can be explained by restrictions of the crystal lattice or the composition of the crystallization solution. This illustrates that crystal structures have to be interpreted with caution when protein–peptide interactions are characterized, and should always be correlated with measurements in solution.  相似文献   

13.
In vivo protein structures and protein-protein interactions are critical to the function of proteins in biological systems. As a complementary approach to traditional protein interaction identification methods, cross-linking strategies are beginning to provide additional data on protein and protein complex topological features. Previously, photocleavable protein interaction reporter (pcPIR) technology was demonstrated by cross-linking pure proteins and protein complexes and the use of ultraviolet light to cleave or release cross-linked peptides to enable identification. In the present report, the pcPIR strategy is applied to Escherichia coli cells, and in vivo protein interactions and topologies are measured. More than 1600 labeled peptides from E. coli were identified, indicating that many protein sites react with pcPIR in vivo. From those labeled sites, 53 in vivo intercross-linked peptide pairs were identified and manually validated. Approximately half of the interactions have been reported using other techniques, although detailed structures exist for very few. Three proteins or protein complexes with detailed crystallography structures are compared to the cross-linking results obtained from in vivo application of pcPIR technology.  相似文献   

14.
To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen-Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly-Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat-denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex.  相似文献   

15.
Nanoparticles provide large surface areas and controlled surface functionality and structure, making them excellent scaffolds for peptide recognition. A family of nanoparticles has been fabricated by amino acid functionalization to afford tailored surfaces. These particles are complementary to a tetraaspartate peptide (TAP) featuring cofacial anionic functionality when in the alpha-helical conformation. The functional groups present on these nanoparticle surfaces provide a tool to investigate the contribution of various noncovalent interactions at the nanoparticle-peptide interface. The ability of these particles to enforce the folding of the peptide into an alpha-helix was explored, demonstrating high helicity induction with particles featuring dicationic amino acids such as lysine or histidine, and little or no helix stabilization with hydrophobic amino acid termini.  相似文献   

16.
Previously we reported that the R73A and H144Q variants of the yeast cyclophilin Cpr3 were virtually inactive in a protease-coupled peptide assay, but retained activity as catalysts of a proline-limited protein folding reaction [Scholz, C. et al. (1997) FEBS Lett. 414, 69-73]. A reinvestigation revealed that in fact these two mutations strongly decrease the prolyl isomerase activity of Cpr3 in both the peptide and the protein-folding assay. The high folding activities found previously originated from a contamination of the recombinant Cpr3 proteins with the Escherichia coli protein SlyD, a prolyl isomerase that co-purifies with His-tagged proteins. SlyD is inactive in the peptide assay, but highly active in the protein-folding assay.  相似文献   

17.
18.
The initiation of synthesis and the accumulation of four cartilage matrix proteins (type II collagen and three noncollagenous proteins, one of Mr 148, one of Mr 59, and an oligometric protein of Mr above 500 with 100-kDa subunits, respectively) were studied in developing mouse limbs and in cultures of limb bud mesenchyme by means of immunolocalization. On day 13 of gestation, type II collagen was observed throughout the entire humerus, whereas the 148-kDa protein was localized only in the central portion. Neither the 100-kDa-subunit protein nor the 59-kDa protein could be demonstrated in the humerus at that stage. On day 14 1/2, type II collagen and the 148-kDa protein were codistributed throughout the humerus. The 100-kDa-subunit protein was detectable in the periphery of the humerus, whereas little 59-kDa protein could yet be demonstrated. On day 18, all four proteins being studied could be detected immunologically in the developing mouse humerus. They differed in immunolocalization. Type Ii collagen, the 148-kDa protein, and the 100-kDa-subunit protein were codistributed throughout the distal and proximal parts of the cartilage. However, the 148-kDa protein could no longer be detected immunochemically in the outermost part of the cartilage in the proximal shoulder joint. The 148-kDa protein codistributed with type II collagen and the 100-kDa-subunit protein in the distal cartilaginous region, where joint development was less advanced. On the other hand, the 59-kDa protein was not demonstrated directly within the hyaline cartilaginous structures, but surrounded the entire structure. This protein was also present in the same part of the proximal joint region as that in which the 148-kDa protein was not detected. To develop an in vitro model for studies of skeletogenesis, mesenchymal cells prepared from mouse limb buds were cultured as micromass cultures at high initial cell density to favor chondrogenesis. On day 3 of culture, type II collagen was the only protein that could be detected immunochemically in the cultures, whereas on day 6 the 148-kDa protein was demonstrated, and a few chondrocytes in the central portion of each cartilaginous nodule were associated with the 100-kDa-subunit protein. The 59-kDa protein could not yet be immunochemically detected.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The AAA+ family of proteins play fundamental roles in all three kingdoms of life. It is thought that they act as molecular chaperones in aiding the assembly or disassembly of proteins or protein complexes. Recent structural studies on a number of AAA+ family proteins have revealed that they share similar structural elements. These structures provide a possible link between nucleotide binding/hydrolysis and the conformational changes which are then amplified to generate mechanical forces for their specific functions. However, from these individual studies it is far from clear whether AAA+ proteins in general share properties in terms of nucleotide induced conformational changes. In this study, we analyze sequence conservation within the AAA+ family and identify two subfamilies, each with a distinct conserved linker sequence that may transfer conformational changes upon ATP binding/release to movements between subdomains and attached domains. To investigate the relation of these linker sequences to conformational changes, molecular dynamics (MD) simulations on X-ray structures of AAA+ proteins from each subfamily have been performed. These simulations show differences in both the N-linker peptide, subdomain motion, and cooperativity between elements of quaternary structure. Extrapolation of subdomain movements from one MD simulation enables us to produce a structure in close agreement with cryo-EM experiments.  相似文献   

20.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号