首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic hypermutation is initiated as B lymphocytes proliferate in germinal centers. The signals that switch on the mutation process are unknown. We have derived an in vitro system to define signals that will initiate mutation in normal, naive splenic B cells. We find that three signals are required to allow detection of somatic mutation in vitro; these are anti-Ig, anti-CD40, and anti-CD38. If any one of these is omitted, mutation remains off. We show that CD40 is obligatory in vivo, as CD40 knockout mice exhibit no Ag-driven mutation. In contrast, CD38 is not, as CD38 knockout mice mutate normally. We believe that, in vitro, CD38, in combination with other stimuli, drives extensive cell division, allowing the detection of mutated sequences. However, in germinal centers in vivo, proliferative activity is instigated by a different molecule. This is the first demonstration of the initiation of hypermutation in vitro with normal splenic B cells using defined stimuli.  相似文献   

2.
3.
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).  相似文献   

4.
5.
Clonal development of Srbc-primed IgM B cell precursors has been studied in vitro. Cells were cultured in the presence of LPS and Srbc, as well as additional T cells derived from three sources: specific Srbc-activated T cells, allogeneic spleen cells and normal thymus cells. Clones developing in the presence of Srbc-activated T cells reached larger sixes than did those developing in the presence of allogeneic cells, thymus cells, or only those primed T cells indigenous in the primed spleen population. However, in all these experiments, precursors primed as described attained considerably larger clone sixes than did normal unprimed precursors. Two conclusions can be made: (1) primed precursors have a greater capacity to generate progeny pfc in response to LPS + Srbc than do normal precursors and (2) specifically activated T cells appear to play a role in elevating pfc production which occurs in response to LPS and Srbc.  相似文献   

6.
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.  相似文献   

7.
8.
Sharks are representatives of the earliest vertebrates that possess an immune system utilizing V(D)J recombination to generate Ag receptors. Their Ab repertoire diversity is based in part on a somatic hypermutation process that introduces adjacent nucleotide substitutions of 2-5 bp. We have isolated mutant nonfunctional Ig rearrangements and intronic flank sequences to characterize the nonselected, intrinsic properties of this phenomenon; changes unique to shark were observed. Duplications and deletions were associated with N additions, suggesting participation of a DNA polymerase with some degree of template independence during the repair of DNA breaks initiated by activation-induced cytidine deaminase. Other mutations were consistent with some in vitro activities of mammalian translesion DNA polymerase η: tandem base substitutions, strand slippage, and small insertions/deletions. The nature of substitution patterns shows that DNA lesions at shark Ig genes recruit DNA repair factors with a species-specific repertoire of activities. We speculate that the tandem mutations are introduced by direct sequential misinsertions and that, in shark B cells, the mispairs tend to be extended rather than proofread. Despite extensive changes undergone by some mutants, the physical range of mutational activity remained restricted to VDJ and within the first 2-kb portion of the 6.8-kb J-C intron, perhaps a self-regulating aspect of activation-induced cytidine deaminase action that is conserved in evolution.  相似文献   

9.
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.  相似文献   

10.
It has been suggested that Epstein-Barr virus (EBV) might suppress antibody maturation either by facilitating bypass of the germinal center reaction or by inhibiting hypermutation directly. However, by infecting the Burkitt's lymphoma (BL) cell line Ramos, which hypermutates constitutively and can be considered a transformed analogue of a germinal center B cell, with EBV as well as by transfecting it with selected EBV latency genes, we demonstrate that expression of EBV gene products does not lead to an inhibition of hypermutation. Moreover, we have identified two natural EBV-positive BL cell lines (ELI-BL and BL16) that hypermutate constitutively. Thus, contrary to expectations, EBV gene products do not appear to affect somatic hypermutation.  相似文献   

11.
B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. Conclusion: S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.  相似文献   

12.
Asplenic patients have a lifelong risk of overwhelming post-splenectomy infection and have been reported to have low numbers of peripheral blood IgM memory B cells. The clinical value of quantitation of memory B cells as an indicator of splenic abnormality or risk of infection has been unclear. To assess changes in B cell sub-populations after splenectomy we studied patients recruited to a spleen registry (n = 591). A subset of 209 adult asplenic or hyposplenic subjects, and normal controls (n = 140) were tested for IgM memory B cells. We also determined a) changes in IgM memory B cells with time after splenectomy using the cross-sectional data from patients on the registry and b) the kinetics of changes in haematological markers associated with splenectomy(n = 45). Total B cells in splenectomy patients did not differ from controls, but memory B cells, IgM memory B cells and switched B cells were significantly (p<0.001) reduced. The reduction was similar for different indications for splenectomy. Changes of asplenia in routine blood films including presence of Howell-Jolly bodies (HJB), occurred early (median 25 days) and splenectomy associated thrombocytosis and lymphocytosis peaked by 50 days. There was a more gradual decrease in IgM memory B cells reaching a stable level within 6 months after splenectomy. IgM memory B cells as proportion of B cells was the best discriminator between splenectomized patients and normal controls and at the optimal cut-off of 4.53, showed a true positive rate of 95% and false positive rate of 20%. In a survey of 152 registry patients stratified by IgM memory B cells around this cut-off there was no association with minor infections and no registry patients experienced OPSI during the study. Despite significant changes after splenectomy, conventional measures of IgM memory cells have limited clinical utility in this population.  相似文献   

13.
The early responses of follicular (Fo) and marginal zone (MZ) B cells to T cell-dependent Ag were compared using anti-hen egg lysozyme (HEL+) B cells capable of class switch recombination and somatic hypermutation (SHM). Purified CD21/(35int)CD23high Fo and CD21/35(high)CD23low MZ splenic B cells from SW(HEL) Ig-transgenic mice were transferred into wild-type recipients and challenged with HEL-sheep RBC. Responding HEL+ B cells from both populations switched efficiently to IgG1, generated syndecan-1+ Ab-secreting cells, and exhibited equivalent rates of proliferation. However, the expansion of HEL+ MZ B cells lagged significantly behind that of HEL+ Fo B cells due to less efficient homing to the outer periarteriolar lymphatic sheath and reduced recruitment into the proliferative response. Despite the equivalent rates of class switch recombination, the onset of SHM was delayed in the MZ subset, indicating that these two activation-induced cytidine deaminase-dependent events are uncoupled in the early response of MZ B cells. Migration of HEL+ B cells into germinal centers coincided with the onset of SHM, occurring more rapidly with Fo vs MZ responders. These results are consistent with the concept that Fo and MZ B cells have evolved to specialize in T cell-dependent and T-independent responses respectively.  相似文献   

14.
Several genetic defects in class switch recombination, which lead to a hyper-IgM syndrome, have been described recently in humans. In addition to the well known role of CD40-ligand-CD40 interaction, these pathologies demonstrate definitively the requirement of CD40-mediated nuclear factor kappa B activation and the essential role of a recently described molecule, the activation-induced cytidine deaminase in an efficient humoral response, which includes class switch recombination and the production of high-affinity antibodies.  相似文献   

15.
16.
Memory B cells, when re-exposed to Ag and T cell help, differentiate into Ig-secreting cells (ISC) at the same time as maintaining a residual pool of non-Ig-secreting cells with memory capabilities. To investigate the mechanism underlying this dual process, we followed the fate of human B cells activated in vitro with the T cell-derived signals CD40 ligand (CD40L), IL-2, and IL-10 using CFSE to monitor cell division. A substantial number of ISCs detected by ELISPOT, intracellular Ig staining, and Ig secretion could be generated from memory but not naive B cells. The proportion of ISCs increased with successive cell divisions and was markedly enhanced by IL-10 at each division. Within ISCs, two distinct populations were detected after withdrawal of CD40L. The first had acquired the plasma cell marker CD38 and continued to proliferate despite the absence of CD40L. In contrast, the second population remained CD38(-), ceased dividing, and underwent rapid apoptosis. The former most likely represent the immediate precursors of long-lived plasma cells, which preferentially home to the bone marrow in vivo, whereas the latter contain short-lived ISCs responsible for the initial Ab response to stimulation with Ag and T cell help. Taken together, the results point to a division-based mechanism responsible not only for regulating differentiation of short- and long-lived ISCs from memory B cells, but for preserving the memory B cell pool for reactivation upon subsequent Ag exposure.  相似文献   

17.
18.
Paramecium tetraurelia wild-type (7S) cells respond to 2.5 mm veratridine by immediate trichocyst exocytosis, provided [Ca2+] o (extracellular Ca2+ concentration) is between about 10–4 to 10–3 m as in the culture medium. Exocytosis was analyzed by light scattering, light and electron microscopy following quenched-flow/ freeze-fracture analysis. Defined time-dependent stages occurred, i.e., from focal (10 nm) membrane fusion to resealing, all within 1 sec.Veratridine triggers exocytosis also with deciliated 7S cells and with pawn mutants (without functional ciliary Ca channels). Both chelation of Ca2+ o or increasing [Ca2+] o to 10–2 m inhibit exocytotic membrane fusion. Veratridine does not release Ca2+ from isolated storage compartments and it is inefficient when microinjected. Substitution of Na+ o for N-methylglucamine does not inhibit the trigger effect of veratridine which also cannot be mimicked by aconitine or batrachotoxin. We conclude that, in Paramecium cells, veratridine activates Ca channels (sensitive to high [Ca2+] o ) in the somatic, i.e., nonciliary cell membrane and that a Ca2+ influx triggers exocytotic membrane fusion. The type of Ca channels involved remains to be established.We thank Dr. C. Kung (Madison, WI) for providing the pawn mutant, Drs. G. Lehle and R. Waldschütz-Schüppel (Konstanz, Germany) for their help with light scattering experiments, and Ms. E. Dassler and D. Bliestle for continuous help during the extensive photographic documentation. This work has been supported by Deutsche Forschungsgemeinschaft, Schwerpunkt Neue mikroskopische Techniken für Biologie und Medizin (grant P178/11) and SFB156/B4.  相似文献   

19.
Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN- dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease.  相似文献   

20.
Probable germline gene sequences from thousands of aligned mature Ab sequences are inferred using simple computational matching to known V(D)J genes. Comparison of the germline to mature sequences in a structural region-dependent fashion allows insights into the methods that nature uses to mature Abs during the somatic hypermutation process. Four factors determine the residue type mutation patterns: biases in the germline, accessibility from single base permutations, location of mutation hotspots, and functional pressures during selection. Germline repertoires at positions that commonly contact the Ag are biased with tyrosine, serine, and tryptophan. These residue types have a high tendency to be present in mutation hotspot motifs, and their abundance is decreased during maturation by a net conversion to other types. The heavy use of tyrosines on mature Ab interfaces is thus a reflection of the germline composition rather than being due to selection during maturation. Potentially stabilizing changes such as increased proline usage and a small number of double cysteine mutations capable of forming disulfide bonds are ascribed to somatic hypermutation. Histidine is the only residue type for which usage increases in each of the interface, core, and surface regions. The net overall effect is a conversion from residue types that could provide nonspecific initial binding into a diversity of types that improve affinity and stability. Average mutation probabilities are approximately 4% for core residues, approximately 5% for surface residues, and approximately 12% for residues in common Ag-contacting positions, excepting the those coded by the D gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号