首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the complex and dynamic behavioural interactions between caring parents and their dependent offspring is a major area of research in behavioural ecology and quantitative genetics. While behavioural ecologists examine the evolution of interactions between parents and offspring in the light of parent-offspring conflict and its resolution, quantitative geneticists explore the evolution of such interactions in the light of parent-offspring co-adaptation due to combined effects of parental and offspring behaviours on fitness. To date, there is little interaction or integration between these two fields. Here, we first review the merits and limitations of each of these two approaches and show that they provide important complementary insights into the evolution of strategies for offspring begging and parental resource provisioning. We then outline how central ideas from behavioural ecology and quantitative genetics can be combined within a framework based on the concept of behavioural reaction norms, which provides a common basis for behavioural ecologists and quantitative geneticists to study the evolution of parent-offspring interactions. Finally, we discuss how the behavioural reaction norm approach can be used to advance our understanding of parent-offspring conflict by combining information about the genetic basis of traits from quantitative genetics with key insights regarding the adaptive function and dynamic nature of parental and offspring behaviours from behavioural ecology.  相似文献   

2.
Behavioural ecologists have proposed various evolutionary mechanisms as to why different personality types coexist. Our ability to understand the evolutionary trajectories of personality traits requires insights from the quantitative genetics of behavioural reaction norms. We assayed > 1000 pedigreed stickleback for initial exploration behaviour of a novel environment, and subsequent changes in exploration over a few hours, representing their capacity to adjust their behaviour to changes in perceived novelty and risk. We found heritable variation in both the average level of exploration and behavioural plasticity, and population differences in the sign of the genetic correlation between these two reaction norm components. The phenotypic correlation was not a good indicator of the genetic correlation, implying that quantitative genetics are necessary to appropriately evaluate evolutionary hypotheses in cases such as these. Our findings therefore have important implications for future studies concerning the evolution of personality and plasticity.  相似文献   

3.
Since the 1990s, behavioural ecologists have largely abandoned some traditional areas of interest, such as optimal foraging, but many long-standing challenges remain. Moreover, the core strengths of behavioural ecology, including the use of simple adaptive models to investigate complex biological phenomena, have now been applied to new puzzles outside behaviour. But this strategy comes at a cost. Replication across studies is rare and there have been few tests of the underlying genetic assumptions of adaptive models. Here, I attempt to identify the key outstanding questions in behavioural ecology and suggest that researchers must make greater use of model organisms and evolutionary genetics in order to make substantial progress on these topics.  相似文献   

4.
Genetic factors underpinning phenotypic variation are required if natural selection is to result in adaptive evolution. However, evolutionary and behavioural ecologists typically focus on variation among individuals in their average trait values and seek to characterize genetic contributions to this. As a result, less attention has been paid to if and how genes could contribute towards within‐individual variance or trait ‘predictability’. In fact, phenotypic ‘predictability’ can vary among individuals, and emerging evidence from livestock genetics suggests this can be due to genetic factors. Here, we test this empirically using repeated measures of a behavioural stress response trait in a pedigreed population of wild‐type guppies. We ask (a) whether individuals differ in behavioural predictability and (b) whether this variation is heritable and so evolvable under selection. Using statistical methodology from the field of quantitative genetics, we find support for both hypotheses and also show evidence of a genetic correlation structure between the behavioural trait mean and individual predictability. We show that investigating sources of variability in trait predictability is statistically tractable and can yield useful biological interpretation. We conclude that, if widespread, genetic variance for ‘predictability’ will have major implications for the evolutionary causes and consequences of phenotypic variation.  相似文献   

5.
Correlated suites of behaviours, or behavioural syndromes, appear to be widespread, and yet few studies have explored how they arise and are maintained. One possibility holds that correlational selection can generate and maintain behavioural syndrome if certain behavioural combinations enjoy greater fitness than other combinations. Here we test this correlational selection hypothesis by comparing behavioural syndrome structure with a multivariate fitness surface based on reproductive success of male water striders. We measured the structure of a behavioural syndrome including dispersal ability, exploration behaviour, latency to remount and sex recognition sensitivity in males. We then measured the relationship between these behaviours and mating success in a range of sex ratio environments. Despite the presence of some significant correlational selection, behavioural syndrome structure was not associated with correlational selection on behaviours. Although we cannot conclusively reject the correlational selection hypothesis, our evidence suggests that correlational selection and resulting linkage disequilibrium might not be responsible for maintaining the strong correlations between behaviours. Instead, we suggest alternative ways in which this behavioural syndrome may have arisen and outline the need for physiological and quantitative genetic tests of these suggestions.  相似文献   

6.
Over the past two decades, evolutionary and behavioural ecologists have become increasingly interested in the adaptive consequences of intraspecific variability in life history and behavioural strategies. Recently, behavioural endocrinologists have begun to uncover surprising relationships between levels of prenatal exposure to gonadal hormones and variation in reproductive behaviour in adulthood. Such relationships may provide a causal explanation for many variations in adult phenotype that are of insterest to behavioural and evolutionary ecologists.  相似文献   

7.
In animal populations, as in humans, behavioural differences between individuals that are consistent over time and across contexts are considered to reflect personality, and suites of correlated behaviours expressed by individuals are known as behavioural syndromes. Lifelong stability of behavioural syndromes is often assumed, either implicitly or explicitly. Here, we use a quantitative genetic approach to study the developmental stability of a behavioural syndrome in a wild population of blue tits. We find that a behavioural syndrome formed by a strong genetic correlation of two personality traits in nestlings disappears in adults, and we demonstrate that genotype–age interaction is the likely mechanism underlying this change during development. A behavioural syndrome may hence change during organismal development, even when personality traits seem to be strongly physiologically or functionally linked in one age group. We outline how such developmental plasticity has important ramifications for understanding the mechanistic basis as well as the evolutionary consequences of behavioural syndromes.  相似文献   

8.
9.
There is increasing interest in the proximate factors that underpin individual variation in suites of correlated behaviours. In this paper, we propose that dietary macronutrient composition, an underexplored environmental factor, might play a key role. Variation in macronutrient composition can lead to among-individual differentiation in single behaviours (‘personality’ ) as well as among-individual covariation between behaviours (‘behavioural syndromes’ ). Here, we argue that the nutritional balance during any life stage might affect the development of syndrome structure and the expression of genes with pleiotropic effects that influence development of multiple behaviours, hence genetic syndrome structure. We further suggest that males and females should typically differ in diet-dependent genetic syndrome structure despite a shared genetic basis. We detail how such diet-dependent multivariate gene-environment interactions can have major repercussions for the evolution of behavioural syndromes.  相似文献   

10.
This review examines the contribution of research on fishes to the growing field of behavioural syndromes. Current knowledge of behavioural syndromes in fishes is reviewed with respect to five main axes of animal personality: (1) shyness-boldness, (2) exploration-avoidance, (3) activity, (4) aggressiveness and (5) sociability. Compared with other taxa, research on fishes has played a leading role in describing the shy-bold personality axis and has made innovative contributions to the study of the sociability dimension by incorporating social network theory. Fishes are virtually the only major taxon in which behavioural correlations have been compared between populations. This research has guided the field in examining how variation in selection regime may shape personality. Recent research on fishes has also made important strides in understanding genetic and neuroendocrine bases for behavioural syndromes using approaches involving artificial selection, genetic mapping, candidate gene and functional genomics. This work has illustrated consistent individual variation in highly complex neuroendocrine and gene expression pathways. In contrast, relatively little work on fishes has examined the ontogenetic stability of behavioural syndromes or their fitness consequences. Finally, adopting a behavioural syndrome framework in fisheries management issues including artificial propagation, habitat restoration and invasive species, may promote restoration success. Few studies, however, have examined the ecological relevance of behavioural syndromes in the field. Knowledge of how behavioural syndromes play out in the wild will be crucial to incorporating such a framework into management practices.  相似文献   

11.
Animal personality has been widely documented across a range of species. The concept of personality is composed of individual behavioural consistency across time and between situations, and also behavioural trait correlations known as behavioural syndromes. Whilst many studies have now investigated the stability of individual personality traits, few have analysed the stability over time of entire behavioural syndromes. Here we present data from a behavioural study of rock pool prawns. We show that prawns are temporally consistent in a range of behaviours, including activity, exploration and boldness, and also that a behavioural syndrome is evident in this population. We find correlations between many behavioural traits (activity, boldness, shoaling and exploration). In addition, behavioural syndrome structure was consistent over time. Finally, few studies have explicitly studied the role of sex differences in personality traits, behavioural consistency and syndrome structure. We report behavioural differences between male and female prawns but no differences in patterns of consistency. Our study adds to the growing literature on animal personality, and provides evidence showing that syndromes themselves can exhibit temporal consistency.  相似文献   

12.
13.
Correlations in behavioural traits across time, situation and ecological context (i.e. ‘behavioural syndromes’ or ‘personality’) have been documented for a variety of behaviours, and in diverse taxa. Perhaps the most controversial inference from the behavioural syndromes literature is that correlated behaviour may act as an evolutionary constraint and evolutionary change in one’s behaviour may necessarily involve shifts in others. We test the two predictions of this hypothesis using comparative data from eighteen populations of the socially polymorphic spider, Anelosimus studiosus (Araneae, Theriidae). First, we ask whether geographically distant populations share a common syndrome. Second, we test whether population differences in behaviour are correlated similarly to within‐population trait correlations. Our results reveal that populations separated by as much as 36° latitude shared similar syndromes. Furthermore, population differences in behaviour were correlated in the same manner as within‐population trait correlations. That is, population divergence tended to be along the same axes as within‐population covariance. Together, these results suggest a lack of evolutionary independence in the syndrome’s constituent traits.  相似文献   

14.
Although neither the genome nor the environment can be manipulated in research on human behaviour, some of the new tools of molecular genetics can be brought to bear on human behavioural disorders (e.g. cognitive disabilities) and quantitative traits (e.g. cognitive abilities). The inability to manipulate the human genome experimentally has had the positive effect of focusing attention on naturally occuring genetic variation responsible for behavioural differences among individuals in all their complex multifactorial splendour. Genes in such complex multiple-gene systems are called quantitative trait loci (QTLs), which merge the two worlds of genetic research, quantitative genetics and molecular genetics. Although most genetic research on complex human behaviour has focused on severe mental disorders, cognitive abilities and disabilities may be even more immediately relevant to neuroscience. For example, verbal ability and spatial ability are two of the most heritable cognitive abilities, and reading disability is the first behavioural disability for which replicated QTL linkage has been found. The purpose of this essay is to provide an overview of the genetics of cognitive abilities and disabilities as an example of the impending merger of quantitative genetics and molecular genetics in QTL analysis of complex traits.  相似文献   

15.
High-resolution molecular cytogenetic techniques such as genomic array CGH and MLPA detect submicroscopic chromosome aberrations in patients with unexplained mental retardation. These techniques rapidly change the practice of cytogenetic testing. Additionally, these techniques may improve genotype-phenotype studies of patients with microscopically visible chromosome aberrations, such as Wolf-Hirschhorn syndrome, 18q deletion syndrome and 1p36 deletion syndrome. In order to make the most of high-resolution karyotyping, a similar accuracy of phenotyping is needed to allow researchers and clinicians to make optimal use of the recent advances. International agreements on phenotype nomenclature and the use of computerized 3D face surface models are examples of such improvements in the practice of phenotyping patients with chromosomal anomalies. The combination of high-resolution cytogenetic techniques, a comprehensive, systematic system for phenotyping and optimal data storage will facilitate advances in genotype-phenotype studies and a further deconstruction of chromosomal syndromes. As a result, critical regions or single genes can be determined to be responsible for specific features and malformations.  相似文献   

16.
1. Efforts to understand the links between evolutionary and ecological dynamics hinge on our ability to measure and understand how genes influence phenotypes, fitness and population dynamics. Quantitative genetics provides a range of theoretical and empirical tools with which to achieve this when the relatedness between individuals within a population is known.
2. A number of recent studies have used a type of mixed-effects model, known as the animal model, to estimate the genetic component of phenotypic variation using data collected in the field. Here, we provide a practical guide for ecologists interested in exploring the potential to apply this quantitative genetic method in their research.
3. We begin by outlining, in simple terms, key concepts in quantitative genetics and how an animal model estimates relevant quantitative genetic parameters, such as heritabilities or genetic correlations.
4. We then provide three detailed example tutorials, for implementation in a variety of software packages, for some basic applications of the animal model. We discuss several important statistical issues relating to best practice when fitting different kinds of mixed models.
5. We conclude by briefly summarizing more complex applications of the animal model, and by highlighting key pitfalls and dangers for the researcher wanting to begin using quantitative genetic tools to address ecological and evolutionary questions.  相似文献   

17.
景观遗传学:概念与方法   总被引:2,自引:0,他引:2  
薛亚东  李丽 《生态学报》2011,31(6):1756-1762
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战,生物多样性保护必须由单纯的物种保护上升到栖息地景观的保护。景观遗传学是定量确定栖息地景观特征对种群遗传结构影响的一门交叉学科,在生物保护及自然保护区管理方面有巨大的潜力。从生物多样性保护的角度评述了景观结构与遗传多样性的关系,介绍了景观遗传学的基本概念,研究尺度和方法,并对景观遗传学当前的研究焦点及面临的挑战做了总结。  相似文献   

18.
Recent work on animal personalities has shown that individuals within populations often differ consistently in various types of behaviour and that many of these behaviours correlate among individuals to form behavioural syndromes. Individuals of certain species have also been shown to differ in their rate of behavioural innovation in arriving at novel solutions to new and existing problems (e.g., mazes, novel foods). Here, we investigate whether behaviours traditionally studied in personality research are correlated with individual rates of innovation as part of a wider behavioural syndrome. Guppies (Poecilia reticulata) of both sexes from three different wild population sources were assessed: (a) exploration of an open area; (b) speed through a three‐dimensional maze; (c) investigation of a novel object; and (d) attraction to a novel food. The covariance structure (syndrome structure) was examined using structural equation modelling. The best model separated behaviours relating to activity in all contexts from rates of exploration/investigation and innovation. Innovative behaviour (utilizing new food and moving through a novel area) in these fish therefore forms part of the same syndrome as the traditional shy‐bold continuum (exploration of an open area and investigation of a novel object) found in many animal personality studies. There were no clear differences in innovation or syndrome structure between the sexes, or between the three different populations. However, body size was implicated as part of the behavioural syndrome structure, and because body size is highly correlated with age in guppies, this suggests that individual behavioural differences in personality/innovation in guppies may largely be driven by developmental state.  相似文献   

19.
Behavioural syndromes, correlations of behaviours conceptually analogous to personalities, have been a topic of recent attention due to their potential to explain trade-offs in behavioural responses, apparently maladaptive behaviour and limits to plasticity. Using Merriam's kangaroo rats (Dipodomys merriami), we assessed the explanatory power and generality of hypothesized syndrome structures derived from the literature and the natural history of the species. Several aspects of functionally distinct behavioural responses of D. merriami were quantified. Syndrome structures were compared using structural equation modelling and model selection procedures. A domain-general behavioural syndrome incorporating cross-functional relationships between measures of boldness, agonistic behaviour, flexibility and food hoarding best explained the data. This pattern suggests that D. merriami behaviours should not be viewed as discrete elements but as components of a multivariate landscape. Our results support arguments that a lack of independence between behaviours may be a general aspect of behavioural phenotypes and suggest that the ability of D. merriami's behaviour to respond to selection may be constrained by underlying connections.  相似文献   

20.
Animal personalities or behavioural syndromes are consistent and/or correlated behaviours across two or more situations within a population. Social insect biologists have measured consistent individual variation in behaviour within and across colonies for decades. The goal of this review is to illustrate the ways in which both the study of social insects and of behavioural syndromes has overlapped, and to highlight ways in which both fields can move forward through the synergy of knowledge from each. Here we, (i) review work to date on behavioural syndromes (though not always referred to as such) in social insects, and discuss mechanisms and fitness effects of maintaining individual behavioural variation within and between colonies; (ii) summarise approaches and principles from studies of behavioural syndromes, such as trade‐offs, feedback, and statistical methods developed specifically to study behavioural consistencies and correlations, and discuss how they might be applied specifically to the study of social insects; (iii) discuss how the study of social insects can enhance our understanding of behavioural syndromes—research in behavioural syndromes is beginning to explore the role of sociality in maintaining or developing behavioural types, and work on social insects can provide new insights in this area; and (iv) suggest future directions for study, with an emphasis on examining behavioural types at multiple levels of organisation (genes, individuals, colonies, or groups of individuals).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号