首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of macrocyclic peptidic BACE-1 inhibitors was designed. While potency on BACE-1 was rather high, the first set of compounds showed poor brain permeation and high efflux in the MDRI–MDCK assay. The replacement of the secondary benzylamino group with a phenylcyclopropylamino group maintained potency on BACE-1, while P-glycoprotein-mediated efflux was significantly reduced and brain permeation improved. Several compounds from this series demonstrated acute reduction of Aβ in human APP-wildtype transgenic (APP51/16) mice after oral administration.  相似文献   

2.
3.
The regulation of α-, β-, (BACE-1), and γ-secretase activities to alter β-amyloid (Aβ) generation is considered to be one of the most promising disease-modifying therapeutics for Alzheimer’s disease. In this study, the effect and mechanisms of bis(7)-tacrine (a promising anti-Alzheimer’s dimer) on Aβ generation were investigated. Bis(7)-tacrine (0.1-3 μM) substantially reduced the amounts of both secreted and intracellular Aβ in Neuro2a APPswe cells without altering the expression of APP. sAPPα and CTFα increased, while sAPPβ and CTFβ decreased significantly in Neuro2a APPswe cells following the treatment with bis(7)-tacrine, indicating that bis(7)-tacrine might activate α-secretase and/or inhibit BACE-1 activity. Furthermore, bis(7)-tacrine concentration-dependently inhibited BACE-1 activity in cultured cells, and also in recombinant human BACE-1 in a non-competitive manner with an IC50 of 7.5 μM, but did not directly affect activities of BACE-2, Cathepsin D, α- or γ-secretase. Taken together, our results not only suggest that bis(7)-tacrine may reduce the biosynthesis of Aβ mainly by directly inhibiting BACE-1 activity, but also provide new insights into the rational design of novel anti-Alzheimer’s dimers that might have disease-modifying properties.  相似文献   

4.
Using structure-guided design, hydroxyethylamine BACE-1 inhibitors were optimized to nanomolar Aβ cellular inhibition with selectivity against cathepsin-D. X-ray crystallography illuminated the S1′ residues critical to this effort, which culminated in compounds 56 and 57 that exhibited potency and selectivity but poor permeability and high P-gp efflux.  相似文献   

5.
C-reactive protein (CRP) and β-amyloid protein (Aβ) are involved in the development of Alzheimer's disease (AD). However, the relationship between CRP and Aβ production is unclear. In vitro and in vivo experiments were performed to investigate the association of CRP with Aβ production. Using the rat adrenal pheochromocytoma cell line (PC12 cells) to mimic neurons, cytotoxicity was evaluated by cell viability and supernatant lactate dehydrogenase (LDH) activity. The levels of amyloid precursor protein (APP), beta-site APP cleaving enzyme (BACE-1), and presenilins (PS-1 and PS-2) were investigated using real-time polymerase chain reaction and Western blotting analysis. Aβ1-42 was measured by enzyme-linked immunosorbent assay. The relevance of CRP and Aβ as well as potential mechanisms were studied using APP/PS1 transgenic (Tg) mice. Treatment with 0.5-4.0 μM CRP for 48 h decreased cell viability and increased LDH leakage in PC12 cells. Incubation with CRP at a sub-toxic concentration of 0.2 μM increased the mRNA levels of APP, BACE-1, PS-1, and PS-2, as well as Aβ1-42 production. CRP inhibitor reversed the CRP-induced upregulations of the mRNA levels of APP, BACE-1, PS-1, and PS-2, and the protein levels of APP, BACE-1, PS-1, and Aβ1-42, but did not reversed Aβ1-42 cytotoxicity. The cerebral levels of CRP and Aβ1-42 in APP/PS1 Tg mice were positively correlated, accompanied with the elevated mRNA expressions of serum amyloid P component (SAP), complement component 1q (C1q), and tumor necrosis factor-α (TNF-α). These results suggest that CRP cytotoxicity is associated with Aβ formation and Aβ-related markers expressions; CRP and Aβ were relevant in early-stage AD; CRP may be an important trigger in AD pathogenesis.  相似文献   

6.
The Amyloid-β (Aβ) peptide is produced from the amyloid precursor protein (APP) by sequential proteolytic cleavage of APP first by β-secretase and then by γ-secretase. β-Site APP cleaving enzyme-1 (BACE-1) is the predominant enzyme involved in β-secretase processing of APP and is a primary therapeutic target for treatment of Alzheimer's disease. While inhibiting BACE-1 activity has obvious therapeutic advantages, BACE-1 also cleaves numerous other substrates with important physiological activity. Thus, blanket inhibition of BACE-1 function may have adverse side effects. We isolated a single chain variable fragment (scFv) from a human-based scFv yeast display library that selectively inhibits BACE-1 activity toward APP by binding the APP substrate at the proteolytic site. We selected the iBSEC1 scFv, since it recognizes the BACE-1 cleavage site on APP but does not bind the adjacent highly antigenic N-terminal of Aβ, and thus it will target APP but not soluble Aβ. When added to 7PA2 cells, a mammalian cell line that overexpresses APP, the iBSEC1 scFv binds APP on the cell surface, reduces toxicity induced by APP overexpression, and reduces both intracellular and extracellular Aβ levels by around 50%. Since the iBSEC1 scFv does not contain the antibody Fc region, this construct does not pose the risk of exacerbating inflammation in the brain as faced with full-length monoclonal antibodies for potential therapeutic applications.  相似文献   

7.
New amino-1,4-oxazine derived BACE-1 inhibitors were explored and various synthetic routes developed. The binding mode of the inhibitors was elucidated by co-crystallization of 4 with BACE-1 and X-ray analysis. Subsequent optimization led to inhibitors with low double digit nanomolar activity in a biochemical and single digit nanomolar potency in a cellular assays. To assess the inhibitors for their permeation properties and potential to cross the blood-brain-barrier a MDR1-MDCK cell model was successfully applied. Compound 8a confirmed the in vitro results by dose-dependently reducing Aβ levels in mice in an acute treatment regimen.  相似文献   

8.
Generation and accumulation of the amyloid β peptide (Aβ) following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 (Beta-site APP Cleaving Enzyme-1, β-secretase) and γ-secretase is a main causal factor of Alzheimer's disease (AD). Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Aβ, is an attractive therapeutic approach for the treatment of AD. In this study, we discovered that natural flavonoids act as non-peptidic BACE-1 inhibitors and potently inhibit BACE-1 activity and reduce the level of secreted Aβ in primary cortical neurons. In addition, we demonstrated the calculated docking poses of flavonoids to BACE-1 and revealed the interactions of flavonoids with the BACE-1 catalytic center. We firstly revealed novel pharmacophore features of flavonoids by using cell-free, cell-based and in silico docking studies. These results contribute to the development of new BACE-1 inhibitors for the treatment of AD.  相似文献   

9.
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer’s disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD.  相似文献   

10.
A novel series of 4-thiazolylimidazoles was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. N-{[5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-2-yl]methyl}butanamide 20, a potent and selective ALK5 inhibitor, exhibited good enzyme inhibitory activity (IC(50)=8.2nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC(50)=32nM).  相似文献   

11.
BACE-1 and GSK-3β both are potential therapeutic drug targets for Alzheimer’s disease. Recently, both these targets received attention for designing dual inhibitors. Till now only two scaffolds (triazinone and curcumin) derivatives have been reported as BACE-1 and GSK-3β dual inhibitors. In our previous work, we have reported first in class dual inhibitor for BACE-1 and GSK-3β. In this study, we have explored other naphthofuran derivatives for their potential to inhibit BACE-1 and GSK-3β through docking, molecular dynamics, binding energy (MM-PBSA). These computational methods were performed to estimate the binding affinity of naphthofuran derivatives towards the BACE-1 and GSK-3β. In the docking results, two derivatives (NS7 and NS9) showed better binding affinity as compared to previously reported inhibitors. Hydrogen bond occupancy of NS7 and NS9 generated from MD trajectories showed good interaction with the flap residues Gln73, Thr72 of BACE-1 and Arg141, Thr138 residues of GSK-3β. MM-PBSA and energy decomposition per residue revealed different components of binding energy and relative importance of amino acid involved in binding. The results showed that the binding of inhibitors was majorly governed by the hydrophobic interactions and suggesting that hydrophobic interactions might be the key to design dual inhibitors for BACE1-1 and GSK-3β. Distance between important pair of amino acid residues indicated that BACE-1 and GSK-3β adopt closed conformation and become inactive after ligand binding. The results suggested that naphthofuran derivatives might act as dual inhibitor against BACE-1 and GSK-3β.  相似文献   

12.
The evaluation of a series of bicyclic aminoimidazoles as potent BACE-1 inhibitors is described. The crystal structures of compounds 14 and 23 in complex with BACE-1 reveal hydrogen bond interactions with the protein important for achieving potent inhibition. The optimization of permeability and efflux properties of the compounds is discussed as well as the importance of these properties for attaining in vivo brain efficacy. Compound (R)-25 was selected for evaluation in vivo in wild type mice and 1.5h after oral co-administration of 300μmol/kg (R)-25 and efflux inhibitor GF120918 the brain Aβ40 level was reduced by 17% and the plasma Aβ40 level by 76%.  相似文献   

13.
A series of low-molecular weight 2,6-diamino-isonicotinamide BACE-1 inhibitors containing an amine transition-state isostere were synthesized and shown to be highly potent in both enzymatic and cell-based assays. These inhibitors contain a trans-S,S-methyl cyclopropane P(3) which bind BACE-1 in a 10s-loop down conformation giving rise to highly potent compounds with favorable molecular weight and moderate to high susceptibility to P-glycoprotein (P-gp) efflux.  相似文献   

14.
15.
Alzheimer disease (AD) is a neuronal dementia for which no treatment has been consolidated yet. Major pathologic hallmark of AD is the aggregated extracellular amyloid-β plaques in the brains of disease sufferers. Aβ-peptide is a major component of amyloid plaques and is produced from amyloid precursor protein (APP) via the proteolysis action. An aspartyl protease known as β-site amyloid precursor protein cleaving enzyme (BACE-1) is responsible for this proteolytic action. Distinctive role of BACE-1 in AD pathogenesis has made it a validated target to develop anti-Alzheimer agents. Our structure-based virtual screening method led to the synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridine BACE-1 inhibitors (6a6p; in vitro hits). Molecular docking and DFT-based ab initio studies using B3LYP functional in association with triple-ζ basis set (TZV) proposed binding mode and binding energies of ligands in the active site of the receptor. In vitro BACE-1 inhibitory activities were determined by enzymatic fluorescence resonance energy transfer (FRET) assay. Most of the synthesized dihydropyridine scaffolds were active against BACE-1 while 6d, 6k, 6n and 6a were found to be the most potent molecules with IC50 values of 4.21, 4.27, 4.66 and 6.78 μM, respectively. Superior BACE-1 inhibitory activities were observed for dihydropyridine derivatives containing fused/nonfused thiazole containing groups, possibly attributing to the additional interactions with S2–S3 subpocket residues. Relatively reliable correlation between calculated binding energies and experimental BACE-1 inhibitory activities was achieved (R2 = 0.51). Moreover, compounds 6d, 6k, 6n and 6a exhibited relatively no calcium channel blocking activity with regard to nifedipine suggesting them as appropriate candidates for further modification(s) to BACE-1 inhibitory scaffolds.  相似文献   

16.
ABSTRACT

A series of potential bioactive compounds, 1-glucopyranosyl-1,2,3-triazole-4,5-dimethylcarboxylate, 1-glucopyranosyl-1,2,3-triazole-4,5-N-dicarboxamide,-dialkyl-dicarboxamide-N-nucleosides and 6-amino-4H-1-(β-D-glucopyranosyl)-8-hydroxy-1,2,3-triazolo[4,5-e][1,3]-diazepin-4-one, were synthesized. Primary activity screening of the novel nucleosides showed poor or no anticancer activity against breast, lung and CNS tumors.  相似文献   

17.
The structure–activity relationship of a series of dihydroisoquinoline BACE-1 inhibitors is described. Application of structure-based design to screening hit 1 yielded sub-micromolar inhibitors. Replacement of the carboxylic acid of 1 was guided by X-ray crystallography, which allowed the replacement of a key water-mediated hydrogen bond. This work culminated in compounds such as 31, which possess good BACE-1 potency, excellent permeability and a low P-gp efflux ratio.  相似文献   

18.
Ola Philipson 《FEBS letters》2009,583(18):3021-1309
Intraneuronal punctate immunostaining in Alzheimer’s disease brain and amyloid-β precursor protein (APP) transgenic mice has been suggested to represent Aβ, but this is somewhat controversial. Here we show that both biochemical Aβ levels and intraneuronal immunostaining are reduced in APP transgenic mice when γ-secretase is inhibited. Moreover, BACE-1 deficient APP transgenic mice show neither Aβ production nor intraneuronal immunostaining. Our findings suggest that the punctate immunostaining with APP antibodies is due to Aβ that has accumulated inside neurons. Similar type of intraneuronal Aβ accumulation, which precedes senile plaque formation, may link Aβ to tauopathy and neurodegeneration in Alzheimer’s disease pathogenesis.  相似文献   

19.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

20.
C6 rat glioma cells were investigated for a shared unidirectional efflux system for cAMP and cholate. [3H]Cholate was accumulated (at pH 7.3) by scraped C6 cell monolayers via a process which was rapid initially and then slowed to a steady state after 10 min at 37 degrees C. Release of the accumulated label was also rapid (t1/2 = 2 min), was essentially complete within 15 min, and exhibited energy dependence since it could be blocked by antimycin A. Half-maximal inhibition by antimycin A occurred at 0.87 microM, and maximal inhibition exceeded 90%. Various other compounds also inhibited [3H]cholate efflux. The most effective was prostaglandin A1, which reduced efflux half-maximally at a concentration of 0.14 microM. Other inhibitors, prostaglandin B1, verapamil, probenecid, and bromosulfophathalein, produced half-maximal inhibition at 5.3, 42, 78, and 110 microM, respectively. Cholate efflux was also blocked by 40 microM vincristine. Initial influx of [3H]cholate was not affected by antimycin A, prostaglandin A1, or vincristine and hence was attributed to a process separate from efflux. C6 rat glioma cells also have the ability to produce high intracellular levels of cAMP in response to isoproterenol and to release cAMP into the medium via a carrier-mediated efflux system. When measured under the same conditions employed for cholate efflux, the efflux of cAMP was found to be sensitive to each of the inhibitors of cholate efflux. Moreover, plots of cAMP efflux versus varying concentrations of prostaglandin A1, antimycin A, prostaglandin B1, verapamil, and probenecid showed similar response curves and comparable values for half-maximal These results indicate that C6 rat glioma cells contain a unidirectional efflux pump for cholate and that this same system also appears to mediate the unidirectional efflux of cAMP. These findings support the hypothesis that various cells contain efflux pumps which exhibit a broad specificity for large organic anions of diverse structure and that the function of these efflux pumps resides primarily in cellular anion detoxification. Analogous efflux pumps for hydrophobic drugs are overproduced in tumor cells exhibiting multidrug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号