首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future.  相似文献   

2.
Among the various kinds of biostratigraphic units, lineage-zones are especially interesting and meaningful, not only in stratigraphy but also in evolutionary biology. The chronological shift of morphology in evolution is fundamentally uninterrupted, but sometimes it seems discontinuous or even saltational. Such breaks have been commonly attributed to gaps in sedimentation, but could be explained, at least in some cases, by more essential mechanisms of evolution. The difference in the patterns of morphological change may be primarily related to the nature of non-sex-associated genetic variation. continuous or discontinuous, as well as the strength of selection pressure. Some theoretical models for phenotypic substitution are presented here in terms of population genetics, though these are not the only possible explanation for breaks in fossil records.  相似文献   

3.
Energy metabolism and animal personality   总被引:1,自引:0,他引:1  
In this paper we show how animal personality could explain some of the large inter-individual variation in resting metabolic rate (MR) and explore methodological and functional linkages between personality and energetics. Personality will introduce variability in resting MR measures because individuals consistently differ in their stress response, exploration or activity levels, all of which influence MR measurements made with respirometry and the doubly-labelled water technique. Physiologists try to exclude these behavioural influences from resting MR measurements, but animal personality research indicates that these attempts are unlikely to be successful. For example, because reactive animals "freeze" when submitted to a stress, their MR could be classified as "resting" because of immobility when in fact they are highly stressed with an elevated MR. More importantly, recent research demonstrating that behavioural responses to novel and highly artificial stimuli are correlated with both behaviour and fitness under more natural circumstances calls into question the wisdom of excluding these behavioural influences on MR measurements. The reason that intra-specific variation in resting MR are so weakly correlated with daily energy expenditure (DEE) and fitness, may be that the latter two measures fully incorporate personality while the former partially excludes its influence. Because activity, exploration, boldness and aggressiveness are energetically costly, personality and metabolism should be correlated and physiological constraints may underlie behavioural syndromes. We show how physiological ecologists can better examine behavioural linkages between personality and metabolism, as required to better understand the physiological correlates of personality and the evolutionary consequences of metabolic variability.  相似文献   

4.
This introduction to the themed issue on Evolutionary and ecological approaches to the study of personality provides an overview of conceptual, theoretical and methodological progress in research on animal personalities over the last decade, and places the contributions to this volume in context. The issue has three main goals. First, we aimed to bring together theoreticians to contribute to the development of models providing adaptive explanations for animal personality that could guide empiricists, and stimulate exchange of ideas between the two groups of researchers. Second, we aimed to stimulate cross-fertilization between different scientific fields that study personality, namely behavioural ecology, psychology, genomics, quantitative genetics, neuroendocrinology and developmental biology. Third, we aimed to foster the application of an evolutionary framework to the study of personality.  相似文献   

5.
The most widely used evolutionary model for phylogenetic trees is the equal-rates Markov (ERM) model. A problem is that the ERM model predicts less imbalance than observed for trees inferred from real data; in fact, the observed imbalance tends to fall between the values predicted by the ERM model and those predicted by the proportional-to-distinguishable-arrangements (PDA) model. Here, a continuous multi-rate (MR) family of evolutionary models is presented which contains entire subfamilies corresponding to both the PDA and ERM models. Furthermore, this MR family covers an entire range from 'completely balanced' to 'completely unbalanced' models. In particular, the MR family contains other known evolutionary models. The MR family is very versatile and virtually free of assumptions on the character of evolution; yet it is highly susceptible to rigorous analyses. In particular, such analyses help to uncover adaptability, quasi-stabilization and prolonged stasis as major possible causes of the imbalance. However, the MR model is functionally simple and requires only three parameters to reproduce the observed imbalance.  相似文献   

6.
A variety of theoretical models incorporate phenotypes expressed in the external environment, but a core question is whether such traits generate dynamics that alter evolution. This has proven to be a challenging and controversial proposition. However, several recent modelling frameworks provide insight: indirect genetic effect (IGE) models, niche construction models, and evolutionary feedback models. These distinct approaches converge upon the observation that gene action at a distance generates feedback that expands the range of trait values and evolutionary rates that we should expect to observe in empirical studies. Such conceptual replication provides solid evidence that traits with extended effects have important evolutionary consequences, but more empirical work is needed to evaluate the predictive power of different modelling approaches.  相似文献   

7.
There is little doubt that someday the classification of personality disorder will be dimensional. The failures of the categorical model are so many and are so well established that it is difficult to imagine that this model will ultimately survive. This paper provides a brief discussion of the major alternative proposals for a dimensional classification of personality disorder. It is possible that the authors of a future edition of a psychiatric diagnostic manual will simply choose one of these alternative proposals. However, the ideal solution might be to develop a common, integrative representation including the important contributions of each of the models.  相似文献   

8.
Laboratory model systems and mathematical models have shed considerable light on the fundamental properties and processes of evolutionary rescue. But it remains to determine the extent to which these model-based findings can help biologists predict when evolution will fail or succeed in rescuing natural populations that are facing novel conditions that threaten their persistence. In this article, we present a prospectus for transferring our basic understanding of evolutionary rescue to wild and other non-laboratory populations. Current experimental and theoretical results emphasize how the interplay between inheritance processes and absolute fitness in changed environments drive population dynamics and determine prospects of extinction. We discuss the challenge of inferring these elements of the evolutionary rescue process in field and natural settings. Addressing this challenge will contribute to a more comprehensive understanding of population persistence that combines processes of evolutionary rescue with developmental and ecological mechanisms.  相似文献   

9.
Recordings,behaviour and models related to corticothalamic feedback   总被引:1,自引:0,他引:1  
In this paper, we review recent work on aspects of corticothalamic interactions in the auditory and in the visual systems. There are gross similarities in the arrangements of these systems, but considerable contrasts in the processing computations and in the effects of corticothalamic feedback.  相似文献   

10.
Many have expected that understanding the evolution of norms should, in some way, bear on our first-order normative outlook: How norms evolve should shape which norms we accept. But recent philosophy has not done much to shore up this expectation. Most existing discussions of evolution and norms either jump headlong into the is/ought gap or else target meta-ethical issues, such as the objectivity of norms. My aim in this paper is to sketch a different way in which evolutionary considerations can feed into normative thinking—focusing on stability. I will discuss two (related) forms of argument that utilize information about social stability drawn from evolutionary models, and employs it to assess claims in political philosophy. One such argument treats stability as feature of social states that may be taken into account alongside other features. The other uses stability as a constraint on the realization of social ideals, via a version of the ought-implies-can maxim. These forms of argument are not new; indeed they have a history going back at least to early modern philosophy. But their marriage with evolutionary information is relatively recent, has a significantly novel character, and has received little attention in recent moral and political philosophy.  相似文献   

11.
One of the main challenges to the adaptionist program in general and the use of optimization models in behavioral and evolutionary ecology, in particular, is that organisms are so constrained' by ontogeny and phylogeny that they may not be able to attain optimal solutions, however those are defined. This paper responds to the challenge through the comparison of optimality and neural network models for the behavior of an individual polychaete worm. The evolutionary optimization model is used to compute behaviors (movement in and out of a tube) that maximize a measure of Darwinian fitness based on individual survival and reproduction. The neural network involves motor, sensory, energetic reserve and clock neuronal groups. Ontogeny of the neural network is the change of connections of a single individual in response to its experiences in the environment. Evolution of the neural network is the natural selection of initial values of connections between groups and learning rules for changing connections. Taken together, these can be viewed as design parameters. The best neural networks have fitnesses between 85% and 99% of the fitness of the evolutionary optimization model. More complicated models for polychaete worms are discussed. Formulation of a neural network model for host acceptance decisions by tephritid fruit flies leads to predictions about the neurobiology of the flies. The general conclusion is that neural networks appear to be sufficiently rich and plastic that even weak evolution of design parameters may be sufficient for organisms to achieve behaviors that give fitnesses close to the evolutionary optimal fitness, particularly if the behaviors are relatively simple.  相似文献   

12.
13.
Hicks  Geoffrey R. F. 《Hydrobiologia》1988,167(1):497-504
Body morphology is said to be the all important factor in determining swimming prowess in copepods. Fusion and differentiation of the body (tagmosis) is coupled with advance into the pelagic realm of the Gymnoplea and is thought, by the provision of a rigid thoracic tagma, to promote swimming efficiency. Thus pelagic copepods are believed to be secondarily derived from bottom dwelling predecessors. Experimental evidence is presented to show that the majority of bottom dwelling harpacticoid families, including the most primitive and the most advanced, have representatives that undergo active sustained swimming movements. Such a widespread occurrence is indicative of a conservative evolutionary trait. This primitive behaviour is linked to precopulatory association which takes place necessarily in the water column; it is a feature retained by representatives of all copepod orders. The implication of cephalic appendage vibration (feeding currents) is the essential feature in the swimming success of the Gymnoplea; planktonic efficiency in these is suggested to have evolved coincident with, rather than because of increased tagmosis.  相似文献   

14.
Evolutionary dynamics in frequency-dependent two-phenotype models   总被引:4,自引:1,他引:3  
General frequency-dependent selection models based on two phenotypic classes are analyzed with underlying one-locus multiallele phenotypic determination systems in diploid populations. It is proved that the mean phenotypic fitnesses tend to equality over discrete generations and genetic mutations if a phenotypic polymorphism is to be maintained. The exact conditions are examined. The present results are valid for a wide class of models whenever random groupings or assortative patterns based on phenotype and affecting fitness, linearly or not, are independent of sex, mating preferences, or kinship. They can also be applied to two-sex haploid models.  相似文献   

15.
Michels PA  Rigden DJ 《IUBMB life》2006,58(3):133-141
Fructose 2,6-bisphosphate is a potent metabolic regulator in eukaryotic organisms; it affects the activity of key enzymes of the glycolytic and gluconeogenic pathways. The enzymes responsible for its synthesis and hydrolysis, 6-phosphofructo-2-kinase (PFK-2) and fructose-2,6-bisphosphatase (FBPase-2) are present in representatives of all major eukaryotic taxa. Results from a bioinformatics analysis of genome databases suggest that very early in evolution, in a common ancestor of all extant eukaryotes, distinct genes encoding PFK-2 and FBPase-2, or related enzymes with broader substrate specificity, fused resulting in a bifunctional enzyme both domains of which had, or later acquired, specificity for fructose 2,6-bisphosphate. Subsequently, in different phylogenetic lineages duplications of the gene of the bifunctional enzyme occurred, allowing the development of distinct isoenzymes for expression in different tissues, at specific developmental stages or under different nutritional conditions. Independently in different lineages of many unicellular eukaryotes one of the domains of the different PFK-2/FBPase-2 isoforms has undergone substitutions of critical catalytic residues, or deletions rendering some enzymes monofunctional. In a considerable number of other unicellular eukaryotes, mainly parasitic organisms, the enzyme seems to have been lost altogether. Besides the catalytic core, the PFK-2/FBPase-2 has often N- and C-terminal extensions which show little sequence conservation. The N-terminal extension in particular can vary considerably in length, and seems to have acquired motifs which, in a lineage-specific manner, may be responsible for regulation of catalytic activities, by phosphorylation or ligand binding, or for mediating protein-protein interactions.  相似文献   

16.
Evolutionary stable sets are used as an extension of the concept of an evolutionarily stable strategy (ESS). They have, as sets, essentially the same properties as ordinary ESSs. Here, ES sets are applied to the characterization of what will happen in an asexual population of mixed-strategists under frequency-dependent selection. Such a population will tend to establish some state, usually not a unique one, that belongs to an ES set. For an important class of widely used mixed-strategist models, ES sets are found to comprise just those population states that allow the possible behavioural acts to be equally successful, or, to put it more precisely, that establish an evolutionarily stable population strategy.  相似文献   

17.
We review the evidence for a link between consistent among-individual variation in behaviour (animal personality) and the ability to win contests over limited resources. Explorative and bold behaviours often covary with contest behaviour and outcome, although there is evidence that the structure of these ‘behavioural syndromes'' can change across situations. Aggression itself is typically repeatable, but also subject to high within-individual variation as a consequence of plastic responses to previous fight outcomes and opponent traits. Common proximate mechanisms (gene expression, endocrine control and metabolic rates) may underpin variation in both contest behaviour and general personality traits. Given the theoretical links between the evolution of fighting and of personality, we suggest that longitudinal studies of contest behaviour, combining behavioural and physiological data, would be a useful context for the study of animal personalities.  相似文献   

18.
Mathematical models are a useful tool for investigating a large number of questions in metabolism, genetics, and gene–environment interactions. A model based on the underlying biology and biochemistry is a platform for in silico biological experimentation that can reveal the causal chain of events that connect variation in one quantity to variation in another. We discuss how we construct such models, how we have used them to investigate homeostatic mechanisms, gene–environment interactions, and genotype–phenotype mapping, and how they can be used in precision and personalized medicine.  相似文献   

19.
Bregje Wertheim 《Oikos》2005,109(1):117-124
Communication signals inducing aggregative behaviour profoundly affect a variety of ecological interactions, partly because they can be exploited by every member of the foodweb. To develop an evolutionary argument for the use of signals inducing aggregative behaviour in animals, the intricate role of aggregation pheromones in the ecology of Drosophila is discussed as a case study. Costs and benefits for the use of aggregation pheromone depend largely on the local characteristics of the environment, they involve various multitrophic interactions, and payoffs and penalties are density dependent. Plasticity in the use of pheromone is predicted and indeed found. For every ecological system, informational cues accompany food web interactions, and this affects the optimal strategy for individuals in their release of and response to such cues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号