首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4·CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.  相似文献   

2.
3.
Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevented TTP-initiated deadenylation in an in vitro macrophage assay of TNF poly(A) stability. Neomycin inhibited TTP-promoted deadenylation at concentrations shown to inhibit the deadenylases poly(A) ribonuclease and CCR4. Stably transfected RAW264.7 macrophages overexpressing PABP1 do not oversecrete TNF; instead they upregulate TTP protein without increasing TNF protein production. The PABP1 inhibition of deadenylation initiated by TTP does not require the poly(A) binding regions in RRM1 and RRM2, suggesting a more complicated interaction than simple masking of the poly(A) tail from a 3'-exonuclease. Like TTP, PABP1 is a substrate for p38 MAP kinase. Finally, PABP1 stabilizes cotransfected TTP in 293T cells and prevents the decrease in TTP levels seen with p38 MAP kinase inhibition. These findings suggest several levels of functional antagonism between TTP and PABP1 that have implications for regulation of unstable mRNAs like TNF.  相似文献   

4.
5.
PUF proteins control gene expression by binding to the 3'-untranslated regions of specific mRNAs and triggering mRNA decay or translational repression. Here we focus on the mechanism of PUF-mediated regulation. The yeast PUF protein, Mpt5p, regulates HO mRNA and stimulates removal of its poly(A) tail (i.e. deadenylation). Mpt5p repression in vivo is dependent on POP2, a component of the cytoplasmic Ccr4p-Pop2p-Not complex that deadenylates mRNAs. In this study, we elucidate the individual roles of the Ccr4p and Pop2p deadenylases in Mpt5p-regulated deadenylation. Both in vivo and in vitro, Pop2p and Ccr4p proteins are required for Mpt5p-regulated deadenylation of HO. However, the requirements for the two proteins differ dramatically: the enzymatic activity of Ccr4p is essential, whereas that of Pop2p is dispensable. We conclude that Pop2p is a bridge through which the PUF protein recruits the Ccr4p enzyme to the target mRNA, thereby stimulating deadenylation. Our data suggest that PUF proteins may enhance mRNA degradation and repress expression by both deadenylation-dependent and -independent mechanisms, using the same Pop2p bridge to recruit a multifunctional Pop2p complex to the mRNA.  相似文献   

6.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing protein tristetraprolin (TTP) at serines 52 and 178. Here we show that the p38 MAPK pathway regulates the subcellular localization and stability of TTP protein. A p38 MAPK inhibitor causes rapid dephosphorylation of TTP, relocalization from the cytoplasm to the nucleus, and degradation by the 20S/26S proteasome. Hence, continuous activity of the p38 MAPK pathway is required to maintain the phosphorylation status, cytoplasmic localization, and stability of TTP protein. The regulation of both subcellular localization and protein stability is dependent on MK2 and on the integrity of serines 52 and 178. Furthermore, the extracellular signal-regulated kinase (ERK) pathway synergizes with the p38 MAPK pathway to regulate both stability and localization of TTP. This effect is independent of kinases that are known to be synergistically activated by ERK and p38 MAPK. We present a model for the actions of TTP and the p38 MAPK pathway during distinct phases of the inflammatory response.  相似文献   

7.
8.
Tristetraprolin (TTP), a substrate of p38 mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), is an RNA-binding protein that binds to AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) of its target mRNAs and accelerates mRNA degradation. A previous study by our group showed that MK2 regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) in human lung microvascular endothelial cells; however, the downstream protein of MK2 remains unknown. Interestingly, both ICAM-1 and IL-8 have AREs in the 3'-UTR of their mRNAs. In the present study, we performed experiments to determine whether MK2 regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP in human pulmonary microvascular endothelial cells (HPMECs). The study revealed that MK2 silencing significantly reduced the half-lives of ICAM-1 and IL-8 mRNAs in TNF-α-stimulated HPMECs. TTP phosphorylation levels were decreased in MK2-silenced cells. TTP silencing led to mRNA stabilization of ICAM-1 and IL-8 and upregulation of protein production following TNF-α stimulation. These results, together with our previous study and others, suggest that MK2, in HPMECs, regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP at the mRNA decay level.  相似文献   

9.
An important determinant for the expression level of cytokines and proto-oncogenes is the rate of degradation of their mRNAs. AU-rich sequence elements (AREs) in the 3(') untranslated regions have been found to impose rapid decay of these mRNAs. ARE-containing mRNAs can be stabilized in response to external signals which activate the p38 MAP kinase cascade including the p38 MAP kinase substrate MAPKAP kinase 2 (MK2). In an attempt to identify components downstream of MK2 in this pathway we analyzed several proteins which selectively interact with the ARE of GM-CSF mRNA. One of them, the cytoplasmic poly(A)-binding protein PABP1, co-migrated with a protein that showed prominent phosphorylation by recombinant MK2. Phosphorylation by MK2 was confirmed using PABP1 purified by affinity chromatography on poly(A) RNA. The selective interaction with an ARE-containing RNA and the phosphorylation by MK2 suggest that PABP1 plays a regulatory role in ARE-dependent mRNA decay and its modulation by the p38 MAP kinase cascade.  相似文献   

10.
11.
《Cellular signalling》2014,26(11):2390-2396
Tristetraprolin (TTP) is an RNA-binding protein which can bind to the AU-rich elements (AREs) at the 3′-untranslated region (3′-UTR) of target mRNA and promote mRNA deadenylation and degradation. We have shown in a previous study that TTP regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8), both of whose mRNAs have AREs in the 3′-UTR, in human pulmonary microvascular endothelial cells (HPMEC) through destabilizing target mRNAs, nevertheless, the mechanism by which TTP promotes mRNA decay remains unclear. Observations have indicated that TTP can interact with CAF1 (CNOT7/hCAF1 in human), a subunit of the CCR4-NOT complex with deadenylase activity. Another study illustrated that TTP can directly bind to CNOT1, the scaffold subunit of the CCR4-NOT complex. The present study showed that TTP bound to the AREs of ICAM-1 and IL-8 mRNAs and was coimmunoprecipitated with intracellular ICAM-1 and IL-8 mRNAs. TTP, CNOT7 and CNOT1 were coimmunoprecipitated in HPMEC. CNOT7 silencing stabilized ICAM-1 and IL-8 mRNAs and increased ICAM-1 and IL-8 production following TNF-α stimulation. These results, together with our previous study, suggest that CNOT7/hCAF1 is involved in ICAM-1 and IL-8 regulation by TTP in HPMEC.  相似文献   

12.
13.
Regulated mRNA decay is a highly important process for the tight control of gene expression. Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions that direct rapid mRNA decay by interaction with decay-promoting ARE-binding proteins (ARE-BPs). The decay of ARE-containing mRNAs is regulated by signaling pathways that are believed to directly target ARE-BPs. Here, we show that BRF1 involved in ARE-mediated mRNA decay (AMD) is phosphorylated by MAPK-activated protein kinase 2 (MK2). In vitro kinase assays using different BRF1 fragments suggest that MK2 phosphorylates BRF1 at four distinct sites, S54, S92, S203, and an unidentified site at the C terminus. Coexpression of an active form of MK2 inhibits ARE mRNA decay activity of BRF1. MK2-mediated inhibition of BRF1 requires phosphorylation at S54, S92, and S203. Phosphorylation of BRF1 by MK2 does not appear to alter its ability to interact with AREs or to associate with mRNA decay enzymes. Thus, MK2 inhibits BRF1-dependent AMD through direct phosphorylation. Although the mechanism underlying this inhibition is still unclear, it appears to target BRF1-dependent AMD at a level downstream from RNA binding and the recruitment of mRNA decay enzymes.  相似文献   

14.
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.  相似文献   

15.
AU-rich elements (AREs) control the expression of numerous genes by accelerating the decay of their mRNAs. Rapid decay and deadenylation of beta-globin mRNA containing AU-rich 3' untranslated regions of the chemoattractant cytokine interleukin-8 (IL-8) are strongly attenuated by activating the p38 mitogen-activated protein (MAP) kinase/MAP kinase-activated protein kinase 2 (MK2) pathway. Further evidence for a crucial role of the poly(A) tail is provided by the loss of destabilization and kinase-induced stabilization in ARE RNAs expressed as nonadenylated forms by introducing a histone stem-loop sequence. The minimal regulatory element in the IL-8 mRNA is located in a 60-nucleotide evolutionarily conserved sequence with a structurally and functionally bipartite character: a core domain with four AUUUA motifs and limited destabilizing function on its own and an auxiliary domain that markedly enhances destabilization exerted by the core domain and thus is essential for the rapid removal of RNA targets. A similar bipartite structure and function are observed for the granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE. Stabilization in response to p38/MK2 activation is seen with the core domain alone and also after mutation of the AUUUA motifs in the complete IL-8 ARE. Stabilization by ARE binding protein HuR requires different sequence elements. Binding but no stabilization is observed with the IL-8 ARE. Responsiveness to HuR is gained by exchanging the auxiliary domain of the IL-8 ARE with that of GM-CSF or with a domain of the c-fos ARE, which results in even stronger responsiveness. These results show that distinct ARE domains differ in function with regard to destabilization, stabilization by p38/MK2 activation, and stabilization by HuR.  相似文献   

16.
17.
The CCR4-CAF1-NOT complex is a major cytoplasmic deadenylation complex in yeast and mammals. This complex associates with RNA-binding proteins and microRNAs to repress translation of target mRNAs. We sought to determine how CCR4 and CAF1 participate in repression and control of maternal mRNAs using Xenopus laevis oocytes. We show that Xenopus CCR4 and CAF1 enzymes are active deadenylases and repress translation of an adenylated mRNA. CAF1 also represses translation independent of deadenylation. The deadenylation-independent repression requires a 5′ cap structure on the mRNA; however, deadenylation does not. We suggest that mere recruitment of CAF1 is sufficient for repression, independent of deadenylation.  相似文献   

18.
19.
20.
TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU–rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE–binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP''s own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号