首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasite's plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell-parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell-parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.  相似文献   

2.
The protozoan parasite Cryptosporidium parvum causes persistent diarrhea and malnutrition in children and the diarrhea-wasting syndrome in AIDS. No therapy exists for eliminating the parasite in the absence of a healthy immune response. Although it had been reported that infection of intestinal cell lines with C. parvum leads to host cell death, the mechanisms of cytolysis have not been characterized. We show here that infection with C. parvum leads to typical apoptotic nuclear condensation and DNA fragmentation in host cells. Both nuclear condensation and DNA fragmentation are inhibited by a caspase inhibitor, showing that caspases are involved in this type of apoptosis. Finally, blocking apoptosis with the caspase inhibitor increases the percentage of infected cells, suggesting that parasites may use apoptosis to exit from the infected cell or that the infected cells may eliminate the parasite through apoptosis. These results suggest that apoptosis could be involved in the pathogenesis of C. parvum infections in vivo, and raise the possibility that therapeutic interference with host cell death could alter the course of the pathology in vivo.  相似文献   

3.
Herein, we report the biochemical and functional characterization of a novel Ca(2+)-activated nucleoside diphosphatase (apyrase), CApy, of the intracellular gut pathogen Cryptosporidium. The purified recombinant CApy protein displayed activity, substrate specificity and calcium dependency strikingly similar to the previously described human apyrase, SCAN-1 (soluble calcium-activated nucleotidase 1). CApy was found to be expressed in both Cryptosporidium parvum oocysts and sporozoites, and displayed a polar localization in the latter, suggesting a possible co-localization with the apical complex of the parasite. In vitro binding experiments revealed that CApy interacts with the host cell in a dose-dependent fashion, implying the presence of an interacting partner on the surface of the host cell. Antibodies directed against CApy block Cryptosporidium parvum sporozoite invasion of HCT-8 cells, suggesting that CApy may play an active role during the early stages of parasite invasion. Sequence analyses revealed that the capy gene shares a high degree of homology with apyrases identified in other organisms, including parasites, insects and humans. Phylogenetic analysis argues that the capy gene is most likely an ancestral feature that has been lost from most apicomplexan genomes except Cryptosporidium, Neospora and Toxoplasma.  相似文献   

4.
Cryptosporidium parvum is an intracellular protozoan parasite that causes severe infection in humans and animals. The great difficulties in treating people and animals suffering from cryptosporidiosis have prompted the development of in vitro experimental models. The aim of this study was to demonstrate that C. parvum can complete its entire life cycle-from sporozoite to infective oocyst-in VELI cells (a line derived from primary culture of rabbit auricular chondrocytes). Successful infections were produced by inoculating cell cultures. Infection of MDCK, HTC-8 and VELI cells with C. parvum closely paralleled in vivo infections with regard to host cell location and chronology of parasite development. Oocysts which were produced in VELI cells were infective for infant NMRI mice. The growth of C. parvum in VELI cells provides a model, both simple and inexpensive, for testing anticryptosporidial drugs and studying host-parasite interactions.  相似文献   

5.
The attachment site of Cryptosporidium muris to host cells was investigated using the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with the host plasma membrane at the dense band, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was dramatically altered at the above two junctures. The outer parasitophorous membrane showed low IMP-density as compared to the host plasma membrane, although both membranes were continuous. The inner parasitophorous membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP. When the attachment sites of parasites and host cells were fractured, circular-shaped fractured faces were observed on both sites of the parasite and host cell. These exposed faces corresponded to the dense bands and were very similar in size in each parasite.  相似文献   

6.
ABSTRACT The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

7.
The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

8.
Cryptosporidium parvum mainly invades the intestinal epithelium and causes watery diarrhea in humans and calves. However, the invasion process has not yet been clarified. In the present study, the invasion process of C. parvum in severe combined immunodeficiency (SCID) mice was examined. Infected mice were necropsied; the ilea were double-fixed routinely and observed by scanning and transmission electron microscopy. In addition, the microvillus membrane was observed by ruthenium red staining. Scanning electron micrographs showed elongation of the microvilli at the periphery of the parasite. The microvilli were shown to be along the surface of the parasite in higher magnification. Transmission electron microscopy confirmed that the invading parasites were located among microvilli. Parasites existed in the parasitophorous vacuole formed by the microvillus membrane. The parasite pellicle attached to the host cell membrane at the bottom of the parasite, and then the pellicle and host cell membrane became unclear. Subsequently, the pellicle became complicated and formed a feeder organelle. In addition, invasion of the parasite was not observed in either a microvillus or the cytoplasm of the host cell. Therefore, C. parvum invades among microvilli, is covered with membranes derived from numerous microvilli, and develops within the host cell.  相似文献   

9.
Membrane lipid compositions of Cryptosporidium parvum and Madin-Darby bovine kidney cells, an epithelial-like cell line commonly used to study coccidia in vitro, were analyzed using both thin-layer chromatography and gas-liquid chromatography. Phosphatidylcholine was the predominant lipid in both C. parvum and Madin-Darby bovine kidney cells, comprising 65% and 41% of the total phospholipids, respectively. Phospholipids of C. parvum contained twice the level of 16:0 and twenty-fold more 18:2 than the Madin-Darby bovine kidney cell line. We suggest that the parasite may be capable of sequestering specific complex membrane lipids at concentrations greater than those in the host cells. This study constitutes the first report of the lipid composition of C. parvum .  相似文献   

10.
The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell.  相似文献   

11.
Molecular targets for detection and immunotherapy in Cryptosporidium parvum   总被引:1,自引:0,他引:1  
Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrheal illness cryptosporidiosis in humans and animals. Although C. parvum is particularly pathogenic in immunocompromised hosts, the molecular mechanisms by which C. parvum invades the host epithelial cells are not well understood. Characterization of molecular-based antigenic targets of C. parvum is required to improve the specificity of detection, viability assessments, and immunotherapy (treatment). A number of zoite surface (glyco)proteins are known to be expressed during, and believed to be involved in, invasion and infection of host epithelial cells. In the absence of protective treatments for this illness, antibodies targeted against these zoite surface (glyco)proteins offers a rational approach to therapy. Monoclonal, polyclonal and recombinant antibodies represent useful immunotherapeutic means of combating infection, especially when highly immunogenic C. parvum antigens are utilized as targets. Interruption of life cycle stages of this parasite via antibodies that target critical surface-exposed proteins can potentially decrease the severity of disease symptoms and subsequent re-infection of host tissues. In addition, development of vaccines to this parasite based on the same antigens may be a valuable means of preventing infection. This paper describes many of the zoite surface glycoproteins potentially involved in infection, as well as summarizes many of the immunotherapeutic studies completed to date. The identification and characterization of antibodies that bind to C. parvum-specific cell surface antigens of the oocyst and sporozoite will allow researchers to fully realize the potential of molecular-based immunotherapy to this parasite.  相似文献   

12.
13.
With the emergence of Cryptosporidium parvum as a major pathogen encountered in human and veterinary clinical practice, a need for increased knowledge of the cellular- and immuno-biology of this Apicomplexan parasite has developed. Initial work has used paradigms taken from other Apicomplexans, especially Plasmodium, Toxoplasma and Eimeria, as a starting point. In this article, Carolyn Petersen discusses the observation that in these organisms, molecular targets of antibodies (which have protective value, in vivo, against disease) have frequently been located in the apical complex or on the surface of the invasive stages of the parasite and appear to mediate biologically crucial processes including motility, attachment to the host cell, modification of the host membrane, and entry into the host cell. Molecular-biology approaches to the study of enzymes and of structural proteins which mediate motility are also considered. Invasion mechanisms, biochemical pathways and motility may involve molecules that will prove susceptible to immunotherapeutic or chemotherapeutic interruption of cryptosporidiosis.  相似文献   

14.
The response of Cryptosporidium parvum to UV light   总被引:1,自引:0,他引:1  
Ultraviolet (UV) light is being considered as a disinfectant by the water industry because it appears to be very effective for controlling potential waterborne pathogens, including Cryptosporidium parvum. However, many organisms have mechanisms such as nucleotide excision repair and photolyase enzymes for repairing UV-induced DNA damage and regaining preirradiation levels of infectivity or population density. Genes encoding UV repair proteins exist in C. parvum, so the parasite should be able to regain infectivity following exposure to UV. Nevertheless, there is an increasing body of evidence that the organism is unable to reactivate following UV irradiation. This paper describes the effective inactivation of C. parvum by UV light, identifies nucleotide excision repair genes in the C. parvum and Cryptosporidium hominis genomes and discusses the inability of UV-exposed oocysts to regain infectivity.  相似文献   

15.
Cryptosporidium parvum first interacts with enterocytes when sporozoites penetrate the host plasma membrane. We have developed a shell vial assay using human embryonic Intestine 407 cells and purified C. parvum sporozoites to study this process. Sporozoites were incubated in culture medium with various carbohydrates and lectins, and the suspensions were then added to the cell monolayers. Following incubation, the monolayers were fixed and stained and the number of schizonts were counted. No decreases in sporozoite motility or Intestine 407 cell viability were observed with carbohydrate or lectin treatment. N-Acetyl-D-glucosamine, chitobiose and chitotriose inhibited C. parvum infection, compared to 5 other tested carbohydrates. Wheat germ agglutinin reduced penetration and concanavalin A enhanced schizont formation, when compared to 8 other lectins. Next, we pretreated sporozoites or Intestine 407 cells with wheat germ agglutinin and concanaval in A prior to sporozoite inoculation. Wheat germ agglutinin treatment of sporozoites or cells equally caused a reduction in C. parvum infection, while enhancement was only observed when Intestine 407 cell were pretreated with concanavalin A. These data suggest that glycoproteins with terminal N-acetyl-D-glucosamine residues may play a role in C. parvum adhesion or penetration of enterocytes. Also, host glycoproteins with concanavalin A-like activity may play a role in these processes.  相似文献   

16.
17.
An increased understanding of host immune responses to Cryptosporidium parvum which are responsible for clearance of primary infection and resistance to reinfection, and characterization of the parasite molecules to which they are directed, are essential for discovery of effective active and passive immunization strategies against cryptosporidiosis. In this article, recent advances in knowledge of humoral and cellular immune responses to C. parvum, their antigen specificities, and mechanisms of protection are briefly reviewed.  相似文献   

18.
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure-activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro.  相似文献   

19.
The absence of a self-sustaining in vitro propagation method for Cryptosporidium parvum is a major obstacle for research on this parasite. Conventional cell monolayers are unsuitable for long-term parasite propagation because the level of infection decreases over time and few oocysts, if any, are produced. The interaction between parasite and host cell was studied to identify factors limiting parasite development in vitro. Loss of substrate adherence and death of parasitized host cells was observed in 2 epithelial cell lines. Nuclear morphology, DNA laddering, annexin V binding, and terminal deoxytransferase-mediated dUTP nick end labeling indicated that host cell death occurred by apoptosis. At 6 hr postinfection, only a minority of infected cells remained in the monolayer, and few survived the initial phase of parasite development without losing adherence. Treatment of infected monolayers with caspase inhibitors drastically reduced cell detachment but failed to increase the number of parasites in monolayers. In contrast, cell cultures grown on laminin-coated plates showed a higher proportion of infected cells. These observations indicate that cell detachment and apoptosis in C. parvum-infected cell culture negatively affect parasite survival in vitro.  相似文献   

20.
The great difficulties in treating people and animals suffering from cryptosporidiosis have prompted the development of in vitro experimental models. Due to the models of in vitro culture, new extracellular stages of Cryptosporidium have been demonstrated. The development of these extracellular phases depends on the technique of in vitro culture and on the species and genotype of Cryptosporidium used. Here, we undertake the molecular characterization by polymerase chain reaction-restriction fragment length polymorphism of different Cryptosporidium isolates from calves, concluding that all are C. parvum of cattle genotype, although differing in the nucleotide at positions 472 and 498. Using these parasites, modified the in vitro culture technique for HCT-8 cells achieving greater multiplication of parasites. The HCT-8 cell cultures, for which the culture had not been renewed in seven days, were infected with C. parvum sporozoites in RPMI-1640 medium with 10% IFBS, CaCl2 and MgCl2 1 mM at pH 7.2. Percentages of cell parasitism were increased with respect to control cultures (71% at 48 h vs 14.5%), even after two weeks (47% vs 1.9%). Also, the percentage of extracellular stages augmented (25.3% vs 1.1% at 96 h). This new model of in vitro culture of C. parvum will enable easier study of the developmental phases of C. parvum in performing new chemotherapeutic assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号