首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Aside from being the precursors of the Ab-secreting cells, B cells are engaged in other immune functions such as Ag presentation to T cells or cytokine production. These functions may contribute to the pathogenic role of B cells in a wide range of autoimmune diseases. We demonstrate that B cells acquire the capacity to amplify IFN-gamma production by CD4 and CD8 T cells during the course of the Th1 inflammatory response to Toxoplasma gondii infection. Using the two following different strategies, we observed that B cells from T. gondii-infected mice, but not from naive mice, induce higher IFN-gamma expression by splenic host T cells: 1) reconstitution of B cell-deficient mice with B cells expressing an alloantigen different from the recipients, and 2) adoptive transfer of B and T cells into RAG-/- mice. In vitro assays allowing the physical separation of T and B cells demonstrate that Ag-primed B cells enhance IFN-gamma production by T cells in a contact-dependent fashion. Using an OVA-transgenic strain of T. gondii and OVA-specific CD4 T cells, we observed that the proinflammatory effect of B cells is neither Ag specific nor requires MHCII expression. However, TNF-alpha expressed on the surface of B cells appears to mediate in part the up-regulation of IFN-gamma by the effector T cells.  相似文献   

3.
4.
Loss of IFN-gamma production by invariant NK T cells in advanced cancer   总被引:10,自引:0,他引:10  
Invariant NK T cells express certain NK cell receptors and an invariant TCRalpha chain specific for the MHC class I-like CD1d protein. These invariant NK T cells can regulate diverse immune responses in mice, including antitumor responses, through mechanisms including rapid production of IL-4 and IFN-gamma, but their physiological functions remain uncertain. Invariant NK T cells were markedly decreased in peripheral blood from advanced prostate cancer patients, and their ex vivo expansion with a CD1d-presented lipid Ag (alpha-galactosylceramide) was diminished compared with healthy donors. Invariant NK T cells from healthy donors produced high levels of both IFN-gamma and IL-4. In contrast, whereas invariant NK T cells from prostate cancer patients also produced IL-4, they had diminished IFN-gamma production and a striking decrease in their IFN-gamma:IL-4 ratio. The IFN-gamma deficit was specific to the invariant NK T cells, as bulk T cells from prostate cancer patients produced normal levels of IFN-gamma and IL-4. These findings support an immunoregulatory function for invariant NK T cells in humans mediated by differential production of Th1 vs Th2 cytokines. They further indicate that antitumor responses may be suppressed by the marked Th2 bias of invariant NK T cells in advanced cancer patients.  相似文献   

5.
6.
The TNF superfamily of cytokines play an important role in T cell activation and inflammation. Sustained expression of lymphotoxin-like inducible protein that competes with glycoprotein D for binding herpesvirus entry mediator on T cells (LIGHT) (TNFSF14) causes a pathological intestinal inflammation when constitutively expressed by mouse T cells. In this study, we characterized LIGHT expression on activated human T cell subsets in vitro and demonstrated a direct proinflammatory effect on regulation of IFN-gamma. LIGHT was induced in memory CD45RO CD4+ T cells and by IFN-gamma-producing CD4+ T cells. Kinetic analysis indicated rapid induction of LIGHT by human lamina propria T cells, reaching maximal levels by 2-6 h, whereas peripheral blood or lymph node-derived T cells required 24 h. Further analysis of intestinal specimens from a 41 patient cohort by flow cytometry indicated membrane LIGHT induction to higher peak levels in lamina propria T cells from the small bowel or rectum but not colon, when compared with lymph node or peripheral blood. Independent stimulation of the LIGHT receptor, herpesvirus entry mediator, induced IFN-gamma production in lamina propria T cells, while blocking LIGHT inhibited CD2-dependent induction of IFN-gamma synthesis, indicating a role for LIGHT in the regulation of IFN-gamma and as a putative mediator of proinflammatory T-T interactions in the intestinal mucosa. Taken together, these findings suggest LIGHT-herpesvirus entry mediator mediated signaling as an important immune regulatory mechanism in mucosal inflammatory responses.  相似文献   

7.
8.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

9.
IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from gammadelta T cells and other non-CD4(+)CD8(+) cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis-infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as gammadelta T cells, may represent a central innate protective response to pulmonary infection.  相似文献   

10.
Differentiation of Ag-specific T cells into IFN-gamma producers is essential for protective immunity to intracellular pathogens. In addition to stimulation through the TCR and costimulatory molecules, IFN-gamma production is thought to require other inflammatory cytokines. Two such inflammatory cytokines are IL-12 and type I IFN (IFN-I); both can play a role in priming naive T cells to produce IFN-gamma in vitro. However, their role in priming Ag-specific T cells for IFN-gamma production during experimental infection in vivo is less clear. In this study, we examine the requirements for IL-12 and IFN-I, either individually or in combination, for priming Ag-specific T cell IFN-gamma production after Listeria monocytogenes (Lm) infection. Surprisingly, neither individual nor combined defects in IL-12 or IFN-I signaling altered IFN-gamma production by Ag-specific CD8 T cells after Lm infection. In contrast, individual defects in either IL-12 or IFN-I signaling conferred partial ( approximately 50%) reductions, whereas combined deficiency in both IL-12 and IFN-I signaling conferred more dramatic (75-95%) reductions in IFN-gamma production by Ag-specific CD4 T cells. The additive effects of IL-12 and IFN-I signaling on IFN-gamma production by CD4 T cells were further demonstrated by adoptive transfer of transgenic IFN-IR(+/+) and IFN-IR(-/-) CD4 T cells into normal and IL-12-deficient mice, and infection with rLm. These results demonstrate an important dichotomy between the signals required for priming IFN-gamma production by CD4 and CD8 T cells in response to bacterial infection.  相似文献   

11.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

12.
13.
Human interleukin 2 (IL 2, or T cell growth factor), which was free of lectin and interferon activity (IFN), induced human peripheral T lymphocytes to produce immune IFN (IFN-gamma). In contrast, non-T cells and macrophages did not produce IFN-gamma in response to IL 2. IL 2 acted directly on unstimulated T cells to induce IFN-gamma production, and also acted in synergy with a suboptimal dose (2 micrograms/ml) of concanavalin A (Con A) to enhance IFN-gamma production. The IFN-gamma-inducing activity of partially purified IL 2 was absorbed along with the IL 2 activity by murine IL 2-dependent CT-6 cell line cells. This further supports the view that IFN-gamma-inducing activity is identical to IL 2. When T cells were separated further into helper/inducer T4+ and suppressor/cytotoxic T8+ subsets by negative selection with monoclonal antibody and complement, both T4+ and T8+-enriched cells produced significant levels of IFN-gamma in response to IL 2. Complete removal of macrophages from purified T lymphocyte populations by treatment of OKM1 plus complement consistently reduced IFN-gamma production in response to IL 2 to a limited degree; readdition of macrophages restored IFN-gamma production by both T cell subsets. This observation that IL 2 contributes to the production of IFN-gamma by human lymphocytes suggests that a cascade of lymphocyte-cell interactions participates in human immune responses.  相似文献   

14.
To investigate the roles of gammadelta T cells in Salmonella infection, we examined the resolution of an intraperitoneal infection with avirulent Salmonella choleraesuis 31N-1 in mice lacking T-cell-receptor (TCR) alphabeta T cells by disruption of the TCRbeta chain gene (TCRbeta(-/-)). The bacteria in TCRbeta(-/-) mice decreased with kinetics similar to that seen in control mice (TCRbeta(+/+)) after infection. The number of natural killer (NK) cells in the peritoneal cavity increased on day 6 after infection and thereafter decreased in both TCRbeta(-/-) and TCRbeta(+/+) mice, whereas the number of gammadelta T cells, in place of alphabeta T cells, increased remarkably in the peritoneal cavity of TCRbeta(-/-) mice on day 6 after infection. The NK cells from Salmonella-infected TCRbeta(-/-) mice produced interferon-gamma (IFN-gamma) but neither interleukin-4 (IL-4) nor IL-13 in response to immobilized anti-NK1.1 monoclonal antibody (mAb). The gammadelta T cells produced IFN-gamma but neither IL-4 nor IL-13 in response to heat-killed Salmonella, whereas both IFN-gamma and IL-13 but no IL-4 was produced by the gammadelta T cells stimulated with immobilized anti-TCRgammadelta mAb. In vivo administration of anti-NK1.1 mAb inhibited the reduction of Salmonella, whereas anti-TCRgammadelta mAb treatment did not affect the bacterial growth in TCRbeta(-/-) mice after Salmonella infection. However, neutralization of endogenous IL-13 with anti-IL-13 mAb enhanced the bacterial clearance in TCRbeta(-/-) mice after infection. These results suggest that NK1.1(+) cells serve mainly to protect against avirulent Salmonella infection in the absence of alphabeta T cells, whereas gammadelta T cells may play dichotomous roles in Salmonella infection through IFN-gamma and IL-13 in TCRbeta(-/-) mice.  相似文献   

15.
Mammalian and avian CD3+ T cells can be separated into two lymphocyte subsets bearing heterodimeric T-cell receptors (TCR) composed of either alphabeta or gammadelta chains. Although it is now widely accepted that gammadelta and alphabeta T cells fulfill mandatory and nonredundant roles, the generality of this assumption and the exact functions played by gammadelta T cells remain uncertain. While an early protective role of gammadelta T cells has long been suspected, recent observations drawn in particular from transgenic models suggest their implication in the homeostatic control of immune and nonimmune processes. This hypothesis is also supported by the existence of several self-reactive gammadelta T-cell subsets in rodents and humans, whose specificity and effector properties will be detailed and discussed here. The present review will also describe several mechanisms that could allow efficient control of these self-reactive subsets while permitting expression of their regulatory and/or protective properties.  相似文献   

16.
Ke Y  Kapp LM  Kapp JA 《Cellular immunology》2003,221(2):107-114
Although many tumors express tumor-specific antigens, most fail to stimulate effective immune responses. Tumors generally lack co-stimulatory molecules, which can lead to tolerance of tumor-specific T cells and progressive tumor growth. Here, we demonstrate that the ovalbumin (OVA) transfected EL4 tumor, E.G7-OVA, grows progressively in syngeneic mice even though the tumor can be rejected if the mice are immunized with OVA in adjuvant. E.G7-OVA grew more rapidly in RAG-1 deficient than sufficient mice suggesting that normal mice make an abortive immune response to this tumor. Depletion of gammadelta T cells or IL-10 augmented the ability of B6 mice to reject E.G7-OVA. Spleen cells from normal, but not IL-10 knockout, mice reconstituted rapid tumor growth in gammadelta T cell-deficient mice. Thus, gammadelta T cells play an important role in preventing immune elimination of this tumor by a mechanism that directly or indirectly involves IL-10.  相似文献   

17.
Notch genes encode membrane receptors that regulate cell fate decisions in metazoa. Notch receptors and ligands are expressed in developing lymphoid tissue and mature lymphocytes and the role of Notch signaling in early T and B cell development has been studied extensively. However, its contribution to mature T cell function is unknown. TCR-mediated T cell activation is a fundamental process of the adaptive immune system that has been studied for decades; however, the details of this process are incompletely understood. In this study, we present evidence that Notch is required for TCR-mediated activation of peripheral T cells. Inhibition of Notch activation dramatically decreases T cell proliferation in both CD4 and CD8 cells and blocks both NF-kappaB activity and IFN-gamma production in peripheral T cells. Our data reveal a new, nondevelopmental function of Notch as a previously unknown key link in peripheral T cell activation and cytokine secretion.  相似文献   

18.
To better understand the roles of gammadelta T cells in mucosal infection, we utilized Salmonella enterica serovar Typhimurium (Salmonella serovar Typhimurium) infection in cattle as it closely approximates Salmonella serovar Typhimurium-induced enterocolitis in humans. Protein and gene expression in alphabeta and gammadelta T cells derived from lymphatic ducts draining the gut mucosa in Salmonella serovar Typhimurium-infected calves were analyzed. In calves with enterocolitis, general gene expression trends in gammadelta T cells suggested subtle activation and innate response, whereas alphabeta T cells were relatively quiescent following Salmonella serovar Typhimurium infection. An increase in IL-2R alpha expression on gammadelta T cells from infected calves and results from in vitro assays suggested that gammadelta T cells were primed by Salmonella serovar Typhimurium LPS to better respond to IL-2 and IL-15. Together with gene expression trends in vivo, these data support early priming activation of target tissue gammadelta T cells during Salmonella serovar Typhimurium infection.  相似文献   

19.
20.
TNF-related apoptosis-inducing ligand (TRAIL, also called Apo2L), a novel member of TNF superfamily, induces apoptosis in transformed cell lines of diverse origin. TRAIL is expressed in most of the cells, and the expression is up-regulated in activated T cells. Four receptors for TRAIL have been identified, and there is complex interplay between TRAIL and TRAIL receptors in vivo. The actual biological function of TRAIL/TRAIL receptor is still not clear. Growing evidence has demonstrated that members of TNF superfamily transduce signals after engagement with their receptors. Cross-linking of TRAIL by plate-bound rTRAIL receptor, death receptor 4-Fc fusion protein enhanced T cell proliferation and increased IFN-gamma production in conjunction with immobilized suboptimal anti-CD3 stimulation in mouse splenocytes. The increase of T cell proliferation by death receptor 4-Fc was dose dependent, and this effect could be blocked by soluble rTRAIL proteins, indicating the occurrence of reverse signaling through TRAIL on T cell. The enhanced secretion of IFN-gamma mediated via TRAIL could be blocked by SB203580, a p38 mitogen-activated protein kinase-specific inhibitor. Thus, in addition to its role in inducing apoptosis by binding to the death receptors, TRAIL itself can enhance T cell proliferation after TCR engagement and signal the augmentation of IFN-gamma secretion via a p38-dependent pathway. This provides another example of reverse signaling by a member of TNF superfamily. In conclusion, our data suggest that TRAIL can itself transduce a reverse signal, and this may shed light on the biological function of TRAIL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号