首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The present study aimed to explore the lactation-induced changes in hepatic gene expression in sows (Sus scrofa) during lactation. Using a porcine whole-genome microarray a total of 632 differentially expressed genes in the liver of lactating compared to non-lactating sows could be identified. Enrichment analysis revealed that the differentially expressed genes were mainly involved in fatty acid metabolism, pyruvate metabolism, glutathione metabolism, glycine, serine and threonine metabolism, citrate cycle, glycerophospholipid metabolism, PPAR signaling, and focal adhesion. The most striking observation with respect to intermediary metabolism was that genes involved in fatty acid catabolism, the catabolism of gluconeogenic amino acids, the citrate cycle and the respiratory chain were up-regulated in the liver of sows during lactation. With respect to immune response, it could be demonstrated that genes encoding acute phase proteins and genes involved in tissue repair were up-regulated and genes encoding adhesion molecules were down-regulated in the liver of sows during lactation. The results indicate that energy-generating pathways and pathways involved in the delivery of gluconeogenic substrates are induced in sow liver during lactation. The alterations of expression of genes encoding proteins involved in immune response suggest that lactation in sows may cause an adaptive immune response that possibly counteracts hepatic inflammation.  相似文献   

2.
Microarray analysis was used to examine gene expression in the freshwater oligotrophic bacterium Caulobacter crescentus during growth on three standard laboratory media, including peptone-yeast extract medium (PYE) and minimal salts medium with glucose or xylose as the carbon source. Nearly 400 genes (approximately 10% of the genome) varied significantly in expression between at least two of these media. The differentially expressed genes included many encoding transport systems, most notably diverse TonB-dependent outer membrane channels of unknown substrate specificity. Amino acid degradation pathways constituted the largest class of genes induced in PYE. In contrast, many of the genes upregulated in minimal media encoded enzymes for synthesis of amino acids, including incorporation of ammonia and sulfate into glutamate and cysteine. Glucose availability induced expression of genes encoding enzymes of the Entner-Doudoroff pathway, which was demonstrated here through mutational analysis to be essential in C. crescentus for growth on glucose. Xylose induced expression of genes encoding several hydrolytic exoenzymes as well as an operon that may encode a novel pathway for xylose catabolism. A conserved DNA motif upstream of many xylose-induced genes was identified and shown to confer xylose-specific expression. Xylose is an abundant component of xylan in plant cell walls, and the microarray data suggest that in addition to serving as a carbon source for growth of C. crescentus, this pentose may be interpreted as a signal to produce enzymes associated with plant polymer degradation.  相似文献   

3.
The expression of a heterologous invertase in potato tubers (Solanum tuberosum) in either the cytosol or apoplast leads to a decrease in total sucrose content and to an increase in glucose. Depending on the targeting of the enzyme different changes in phenotype and metabolism of the tubers occur: the cytosolic invertase expressing tubers show an increase in the glycolytic flux, accumulation of amino acids and organic acids, and the appearance of novel disaccharides; however, these changes are not observed when the enzyme is expressed in the apoplast [Roessner et al. (2001). Plant Cell, 13, 11-29]. The analysis of these lines raised several questions concerning the regulation of compartmentation of metabolites in potato tubers. In the current study we addressed these questions by performing comparative subcellular metabolite profiling. We demonstrate that: (i) hexoses accumulate in the vacuole independently of their site of production, but that the cytosolic invertase expression led to a strong increase in the cytosolic glucose concentration and decrease in cytosolic sucrose, whereas these effects were more moderate in the apoplastic expressors; (ii) three out of four of the novel compounds found in the cytosolic overexpressors accumulate in the same compartment; (iii) despite changes in absolute cellular content the subcellular distribution of amino acids was invariant in the invertase overexpressing tubers. These results are discussed in the context of current models of the compartmentation of primary metabolism in heterotrophic plant tissues. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Phosphoglycerate mutases catalyze the interconversion of 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms that are either cofactor (2,3-diphosphoglycerate)-dependent or cofactor-independent. The two enzymes have no similarity in amino acid sequence, tertiary structure, or catalytic mechanism. Certain organisms including vertebrates have only the cofactor-dependent form, whereas other organisms can possess the independent form or both. Caenorhabditis elegans has been predicted to have only independent phosphoglycerate mutase. In this study, we have cloned and produced recombinant, independent phosphoglycerate mutases from C. elegans and the human-parasitic nematode Brugia malayi. They are 70% identical to each other and related to known bacterial, fungal, and protozoan enzymes. The nematode enzymes possess the catalytic serine, and other key amino acids proposed for catalysis and recombinant enzymes showed typical phosphoglycerate mutase activities in both the glycolytic and gluconeogenic directions. The gene is essential in C. elegans, because the reduction of its activity by RNA interference led to embryonic lethality, larval lethality, and abnormal body morphology. Promoter reporter analysis indicated widespread expression in larval and adult C. elegans with the highest levels apparent in the nerve ring, intestine, and body wall muscles. The enzyme was found in a diverse group of nematodes representing the major clades, indicating that it is conserved throughout this phylum. Our results demonstrate that nematodes, unlike vertebrates, utilize independent phosphoglycerate mutase in glycolytic and gluconeogenic pathways and that the enzyme is probably essential for all nematodes.  相似文献   

5.
Our objective was to understand the influence of dietary gluconeogenic amino acids on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). We analyzed the effects of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid (DAA: alanine, aspartic acid or glutamic acid), on the regulation of hepatic glycolytic and gluconeogenic enzymes. We fed juvenile rainbow trout with isonitrogenous and isoenergetic diets in which part of nitrogen from fishmeal was replaced by nitrogen from one of the three DAA. Fish were fed over 9 weeks and samples withdrawn 6 h after feeding or 5 days after food deprivation. Our data did not show a clear effect of an excess of DAA on activities of glycolytic enzymes (glucokinase and pyruvate kinase) compared to the control diet. In contrast, feeding caused a significant repression of gluconeogenic enzyme activities (glucose-6-phosphatase, fructose-1,6-bisphosphatase and mitochondrial phosphoenolpyruvate carboxykinase) only in fish fed the three DAA substituted diets. However, these differences were insufficient to affect postprandial glycemia significantly. In conclusion, an excess of dietary DAA tested does not seem to modify glycemia or to have a negative impact on dietary carbohydrate utilization in rainbow trout.  相似文献   

6.
Many of the biochemical pathways for plant amino acid metabolism are known and, at least in model species, most of the genes encoding the biosynthetic enzymes have been identified. How the accumulation of amino acids is regulated is much less well understood and for this genetic analysis can be instrumental. In potato, the nutritional value of the tubers is often determined by the content of essential amino acids such as lysine, tyrosine, methionine and cysteine. Better insight into the genetic determinants underlying the variation in amino acid accumulation in potato could support efforts to improve tuber nutritional quality by breeding. In this study, we used a diploid potato mapping population to explore the genetic basis of amino acid content. Hereto, we compared the use of one non-targeted and two targeted analytical approaches for amino acid analysis, allowing the evaluation of the robustness of amino acid quantification and the number and strength of detected quantitative trait locis (QTLs) across the different analytical platforms. Assessment of the three methodologies revealed a comparable detection of amino acids using non-targeted and targeted approaches. QTL detection across the different analytical platforms was similar, although slight differences in strength and explained variance were observed. The QTL regions were subsequently studied to provide candidate genes for the genetic regulation of amino acid accumulation in potato. Our results are discussed in the context of the detection of amino acid variation and its implications for the identification of QTLs.  相似文献   

7.
A conditional developmental mutant of Mucor racemosus which is capable of oxidative energy metabolism is described. Unlike the wild-type strain the mutant was highly fermentative and exhibited the yeast morphology when grown aerobically in glucose-containing media. The high fermentative activity and yeast morphology under these conditions correlated well with maximal expression of glycolytic enzymes and with expression of some polypeptides characteristic of anaerobic growth. Aerobic growth of the mutant on amino acids as the sole carbon source resulted in growth in the mycelial morphology. The mutant was fully capable of oxidative metabolism as judged by its ability to grow on amino acids, respiratory capacity, and complement of tricarboxylic acid cycle enzymes. The results support the hypothesis that oxygen controls both the expression of glycolytic enzymes and the expression of proteins involved in morphogenesis. Moreover, they suggest that there are common regulatory elements in the control of these two classes of gene products. Abnormally high levels of aconitase and isocitrate dehydrogenase in the mutant are consistent with the proposal that pool sizes of citrate may act as a regulator of genes responsive to environmental oxygen concentration.  相似文献   

8.
The aim of this work was to define the metabolic factors which regulate the respiratory pathways in trangenic potato tubers. We previously found that respiration is enhanced in transgenic tubers which express a yeast invertase and a glucokinase from Zymomonas mobilis . In this study we investigated glycolysis in three further transgenic potato lines with profound changes in the mobilization of sucrose. We studied antisense ADPglucose pyrophosphorylase lines which are characterized by a reduction in starch accumulation and a significant build up of sucrose and related metabolic intermediates. We also report the generation of two novel double transgenic lines where the yeast invertase is expressed specifically in tubers of the ADPglucose pyrophosphorylase antisense line, targeted to either the cytosol or apopolast. We evaluated whether the localization of sucrose cleavage had an impact on the glycolytic induction, and assessed if invertase expression in the high-sucrose background had any further effects on glycolysis. We found that induction of the glycolytic enzymes only occurs when the invertase is targeted to the cytosol, and that the extent of this induction was comparable in the wild type and antisenseADPglucose pyrophosphorylase backgrounds. We conclude that the signal regulating glycolysis is directly linked to cytosolic sucrose hydrolysis.  相似文献   

9.
10.
In order to get an insight into the evolutionary aspect of metabolic pathways, especially of the ubiquitous glycolytic pathway, we have carried out an extensive search of sense-sense and sense-antisense similarities for enzyme proteins in the glycolytic pathway, the pentose phosphate cycle, alcohol and lactate fermentation pathways and the TCA cycle. This investigation of amino acid sequences reveals a curious pattern of similarity relations; no similarity can be found between the enzyme proteins in a section of the glycolytic pathway where the glyceraldehyde-3-phosphate or even glycerol-3-phosphate is converted into the pyruvate while many examples of sense-sense and sense-antisense similarities are found even between enzyme proteins in distant blocks, e.g. between the proteins in the TCA cycle and those in the pentose phosphate cycle, as well as between the functionally associated proteins in each of these blocks. Complementary to this characteristic pattern of amino acid sequence similarity, the search for similarities of nucleotide sequences also finds that the similarities of glycolytic enzyme genes, some sense-sense and others sense-antisense similarities, are concentrated on the nucleotide sequences of prokaryotic 16S or eukaryotic 18S ribosomal RNA gene with its flanks, although some of the copy sequences are also found in transfer RNA genes as well as in 23S or 26S ribosomal RNA gene. These results strongly suggest that the metabolic pathways have been developed by the chance assembly of enzyme proteins generated from the sense and antisense strands of pre-existing genes, e.g. the fermentation pathways and pentose phosphate cycle by the proteins from the genes of enzymes in the glycolytic pathway and the TCA cycle from all these successively increased genes, ascribing the origin of metabolic enzyme genes to the close relation between the glycolytic enzyme protein genes and the RNA gene cluster.  相似文献   

11.
The original aim of this work was to increase starch accumulation in potato tubers by enhancing their capacity to metabolise sucrose. We previously reported that specific expression of a yeast invertase in the cytosol of tubers led to a 95% reduction in sucrose content, but that this was accompanied by a larger accumulation of glucose and a reduction in starch. In the present paper we introduced a bacterial glucokinase from Zymomonas mobilis into an invertase-expressing transgenic line, with the intention of bringing the glucose into metabolism. Transgenic lines were obtained with up to threefold more glucokinase activity than in the parent invertase line and which did not accumulate glucose. Unexpectedly, there was a further dramatic reduction in starch content, down to 35% of wild-type levels. Biochemical analysis of growing tuber tissue revealed large increases in the metabolic intermediates of glycolysis, organic acids and amino acids, two- to threefold increases in the maximum catalytic activities of key enzymes in the respiratory pathways, and three- to fivefold increases in carbon dioxide production. These changes occur in the lines expressing invertase, and are accentuated following introduction of the second transgene, glucokinase. We conclude that the expression of invertase in potato tubers leads to an increased flux through the glycolytic pathway at the expense of starch synthesis and that heterologous overexpression of glucokinase enhances this change in partitioning.  相似文献   

12.
Sugars are not only metabolic substrates: they also act as signals that regulate the metabolism of plants. Previously, we found that glycolysis is induced in transgenic tubers expressing a yeast invertase in the cytosol but not in those expressing invertase in the apoplast. This suggests that either the low level of sucrose, the increased formation of cytosolic glucose or the increased levels of metabolites downstream of the sucrose cleavage is responsible for the induction of glycolysis in storage organs. In order to discriminate between these possibilities, we cloned and expressed a bacterial sucrose phosphorylase gene from Pseudomonas saccharophila in potato tubers. Due to the phosphorolytic cleavage of sucrose, formation of glucose was circumvented, thus allowing assessment of the importance of cytosolic glucose – and, by implication, flux through hexokinase – in glycolytic induction. Expression of sucrose phosphorylase led to: (i) a decrease in sucrose content, but no decrease in glucose or fructose; (ii) a decrease in both starch accumulation and tuber yield; (iii) increased levels of glycolytic metabolites; (iv) an induction of the activities of key enzymes of glycolysis; and (v) increased respiratory activity. We conclude that the induction of glycolysis in heterotrophic tissues such as potato tubers occurs via a glucose‐independent mechanism.  相似文献   

13.
Germinated tubers of selected cultivars Kera, Resy, Nicola and Oreb were made healthier by heat treatment. They were derived from germ explants on MS media with the addition of BAP 1 mg 1-1 and IAA 0.2 mg 1−1. After sufficient multiplication of stems, optimum conditions of the photoperiod were followed for the induction of axillary microtubers on stem segments in media with BAP 10 mg 1-1 and 8% sucrose. The ability of tuberization is different: the early cvs. Kera and Resy induce earlier tubers at a long photoperiod and late cvs. Nicola and Oreb tuber rather at a short photoperiod. In suitable photoperiods the inhibitory substances accelerate the induction of axillary tubers and limit the formation of adventitious roots. Synthetic inhibitors applied in induction media increase the number of the tubers. The quality of tubers was affected by the addition of a mixture of amino acids: aspartic, glutamic, lysine and proline in concentrations of 12.5, 25 and 50 mg.1-1 into the induction media. In the course of cultivation the types which were growing well, formed tubers and increased the volume were selected. The representation of amino acids in the tubers was not significantly affected, there was only an increase in proline. The higher content of amino acids was reflected in the increase of proteins in the tubers. The selected clones are further multiplied.  相似文献   

14.
15.
16.
17.
18.
19.
Heterotrophic carbon metabolism has been demonstrated to be limited by oxygen availability in a variety of plant tissues, which in turn inevitably affects the adenylate status. To study the effect of altering adenylate energy metabolism, without changing the oxygen supply, we expressed a plastidially targeted ATP/ADP hydrolyzing phosphatase (apyrase) in tubers of growing potato (Solanum tuberosum) plants under the control of either inducible or constitutive promoters. Inducible apyrase expression in potato tubers, for a period of 24 h, resulted in a decrease in the ATP-content and the ATP-ADP ratio in the tubers. As revealed by metabolic profiling, this was accompanied by a decrease in the intermediates of sucrose to starch conversion and several plastidially synthesized amino acids, indicating a general depression of tuber metabolism. Constitutive tuber-specific apyrase expression did not lead to a reduction of ATP, but rather a decrease in ADP and an increase in AMP levels. Starch accumulation was strongly inhibited and shifted to the production of amylopectin instead of amylose in these tubers. Furthermore, the levels of almost all amino acids were decreased, although soluble sugars and hexose-Ps were highly abundant. Respiration was elevated in the constitutively expressing lines indicating a compensation for the dramatic increase in ATP hydrolysis. The increase in respiration did not affect the internal oxygen tensions in the tubers. However, the tubers developed a ginger-like phenotype having an elevated surface-volume ratio and a reduced mass per tuber. Decreased posttranslational redox activation of ADP-glucose pyrophosphorylase and a shift in the ratio of soluble starch synthase activity to granule-bound starch synthase activity were found to be partially responsible for the alterations in starch structure and abundance. The activity of alcohol dehydrogenase was decreased and pyruvate decarboxylase was induced, but this was neither reflected by an increase in fermentation products nor in the cellular redox state, indicating that fermentation was not yet induced in the transgenic lines. When taken together the combined results of these studies allow the identification of both short- and long-term adaptation of plant metabolism and development to direct changes in the adenylate status.  相似文献   

20.
To establish an infection, the pathogen Candida albicans must assimilate carbon and grow in its mammalian host. This fungus assimilates six-carbon compounds via the glycolytic pathway, and two-carbon compounds via the glyoxylate cycle and gluconeogenesis. We address a paradox regarding the roles of these central metabolic pathways in C. albicans pathogenesis: the glyoxylate cycle is apparently required for virulence although glyoxylate cycle genes are repressed by glucose at concentrations present in the bloodstream. Using GFP fusions, we confirm that glyoxylate cycle and gluconeogenic genes in C. albicans are repressed by physiologically relevant concentrations of glucose, and show that these genes are inactive in the majority of fungal cells infecting the mouse kidney. However, these pathways are induced following phagocytosis by macrophages or neutrophils. In contrast, glycolytic genes are not induced following phagocytosis and are expressed in infected kidney. Mutations in all three pathways attenuate the virulence of this fungus, highlighting the importance of central carbon metabolism for the establishment of C. albicans infections. We conclude that C. albicans displays a metabolic program whereby the glyoxylate cycle and gluconeogenesis are activated early, when the pathogen is phagocytosed by host cells, while the subsequent progression of systemic disease is dependent upon glycolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号