首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
We investigated the effects of a selective beta(2)-agonist, salbutamol, and of phosphodiesterase type 4 inhibition with 4-(3-butoxy-4-methoxy benzyl)-2-imidazolidinone (Ro-20-1724) on the airway and parenchymal mechanics during steady-state constriction induced by MCh administered as an aerosol or intravenously (iv). The wave-tube technique was used to measure the lung input impedance (ZL) between 0.5 and 20 Hz in 31 anesthetized, paralyzed, open-chest adult Brown Norway rats. To separate the airway and parenchymal responses, a model containing an airway resistance (Raw) and inertance (Iaw), and a parenchymal damping (G) and elastance (H), was fitted to ZL spectra under control conditions, during steady-state constriction, and after either salbutamol or Ro-20-1724 delivery. In the Brown Norway rat, the response to iv MCh infusion was seen in Raw and G, whereas continuous aerosolized MCh challenge produced increases in G and H only. Both salbutamol, administered either as an aerosol or iv, and Ro-20-1724 significantly reversed the increases in Raw and G when MCh was administered iv. During the MCh aerosol challenge, Ro-20-1724 significantly reversed the increases in G and H, whereas salbutamol had no effect. These results suggest that, after MCh-induced changes in lung function, salbutamol increases the airway caliber. Ro-20-1724 is effective in reversing the airway narrowings, and it may also decrease the parenchymal constriction.  相似文献   

2.
We studied the effect of resting smooth muscle length on the contractile response of the major resistance airways (generations 0-5) in 18 mongrel dogs in vivo using tantalum bronchography. Dose-response curves to 10(-10) to 10(-7) mol/kg methacholine (MCh) were generated [at functional residual capacity (FRC)] by repeated intravenous bolus administration using tantalum bronchography after each dose. Airway constriction varied substantially with dose-equivalent stimulation and varied sequentially from trachea (8.8 +/- 2.2% change in airway diam) to fifth-generation bronchus (49.8 +/- 3.0%; P less than 0.001). Length-tension curves were generated for each airway to determine the airway diameter (i.e., resting in situ smooth muscle length) at which maximal constriction was elicited using bolus intravenous injection of 10(-8) mol/kg MCh. A Frank-Starling relationship was obtained for each airway; the transpulmonary pressure at which maximal constriction was elicited increased progressively from 2.50 +/- 1.12 cmH2O for trachea (approximately FRC) to 18.3 +/- 1.05 cmH2O for fifth-generation airways (approximately 50% TLC) (P less than 0.001). A similar relationship was obtained when change in airway diameter was plotted as a function of airway radius. We demonstrate substantial heterogeneity in the lung volumes at which maximal constriction is elicited and in distribution of parasympathomimetic constriction within the first few generations of resistance bronchi. Our data also suggest that lung hyperinflation may lead to augmented airway contractile responses by shifting resting smooth muscle length toward optimum resting smooth muscle length.  相似文献   

3.
We examined the effects of lung volume change and volume history on lung resistance (RL) and its components before and during induced constriction. Eleven subjects, including three current and four former asthmatics, were studied. RL, airway resistance (Raw), and, by subtraction, tissue viscance (Vtis) were measured at different lung volumes before and after a deep inhalation and were repeated after methacholine (MCh) aerosols up to maximal levels of constriction. Vtis, which average 9% of RL at base line, was unchanged by MCh and was not changed after deep inhalation but increased directly with lung volume. MCh aerosols induced constriction by increasing Raw, which was reversed by deep inhalation in inverse proportion to responsiveness. such that the more responsive subjects reversed less after a deep breath. Responsiveness correlated directly with the degree of maximal constriction, as more responsive subjects constricted to a greater degree. These results indicate that in humans Vtis comprises a small fraction of overall RL, which is clearly volume-dependent but unchanged by MCh-induced constriction and unrelated to the degree of responsiveness of the subject.  相似文献   

4.
Altered perfusion of the bronchial mucosal plexus relative to the adventitial plexus may contribute to geometric changes in the airway wall and lumen. We studied bronchial perfusion distribution in sheep by using fluorescent microspheres at baseline and during intrabronchial artery challenge with methacholine chloride (MCh; n = 7). Additionally, we measured airway resistance (Raw) during MCh with control or increased perfusion (n = 9). Raw with MCh was significantly greater for high than control flow. Microspheres in histological sections lodged predominantly in the mucosa (60%), and this was not altered by MCh. However, more microspheres lodged in airways >1-mm in diameter during MCh and increased perfusion than MCh and control flow. In airways < or =1 mm in diameter, fewer microspheres lodged during control than increased flow. If the number of microspheres represents regional agonist access to airway smooth muscle, then the differences observed in Raw can be explained by the distribution of agonist. During challenge, there was greater MCh delivery to larger airways during increased flow and less delivery to smaller airways during control flow. The results demonstrate the effects of axial perfusion distribution on Raw.  相似文献   

5.
Tissue viscance (Vti), the pressure drop across the lung tissues in phase with flow, increases after induced constriction. To gain information about the possible site of response, we induced increases in Vti with methacholine (MCh) and attempted to correlate these changes with alterations in lung morphology. We measured tracheal (Ptr) and alveolar pressure (PA) in open-chest rabbits during mechanical ventilation [frequency = 1 Hz, tidal volume = 5 ml/kg, positive end-expiratory pressure (PEEP) = 5 cmH2O] under control conditions and after administration of saline or MCh (32 or 128 mg/ml) aerosols. We calculated lung elastance (EL), lung resistance (RL), Vti, and airway resistance (Raw) by fitting the equation of motion to changes in Ptr and PA. The lungs were then frozen in situ with liquid nitrogen (PEEP = 5 cmH2O), excised, and processed using freeze substitution techniques. Airway constriction was assessed by measuring the ratio of the airway lumen (A) to the ideally relaxed area (Ar). Tissue distortion was assessed by measuring the mean linear intercept between alveolar walls (Lm), the standard deviation of Lm (SDLm), and an atelectasis index (ATI) derived by calculating the ratio of tissue to air space using computer image analysis. RL, Vti, and EL were significantly increased after MCh, and Raw was unchanged. A/Ar, Lm, SDLm, and ATI all changed significantly with MCh. Log-normalized change (% of baseline) in Vti significantly correlated with A/Ar (r = -0.693), Lm (r = 0.691), SDLm (r = 0.648), and ATI (r = 0.656). Hence, changes in lung tissue mechanics correlated with changes in morphometric indexes of parenchymal distortion and airway constriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Intratracheal administration of interleukin-10 (IL-10) has been reported to inhibit allergic inflammation but augment airway hyperresponsiveness (AHR). In the present study, airway and smooth muscle responsiveness to methacholine (MCh) were compared in wild-type (WT) and IL-10-deficient (IL-10-KO) mice to investigate the role of endogenous IL-10 in AHR development. Naive WT and IL-10-KO mice exhibited similar dose-dependent increases in airway resistance (Raw) to intravenous MCh. Sensitization and challenge with ragweed (RW) induced a twofold increase in responsiveness to intravenous MCh in WT mice, but hyperresponsiveness was not observed in similarly treated IL-10-KO mice. Likewise, tracheal rings from RW-sensitized and -challenged WT mice exhibited a fourfold greater responsiveness to MCh than IL-10-KO tracheal preparations. Measurements of airway constriction by whole body plethysmography further supported the Raw and tracheal ring data (i.e., AHR was not observed in the absence of IL-10). Interestingly, factors previously implicated in the development of AHR, including IL-4, IL-5, IL-13, IgA, IgG1, IgE, eosinophilia, and lymphocyte recruitment to the airways, were upregulated in the IL-10-KO mice. Treatment with recombinant murine IL-10 at the time of allergen challenge reduced the magnitude of inflammation but reinstated AHR development in IL-10-KO mice. Adoptive transfer of mononuclear splenocytes to IL-10-sufficient severe combined immunodeficient mice indicated that lymphocytes were an important source of the IL-10 impacting AHR development. These results provide evidence that IL-10 expression promotes the development of allergen-induced smooth muscle hyperresponsiveness.  相似文献   

7.
Decorin (Dcn), a small leucine-rich proteoglycan, is present in the extracellular matrix of the airways and lung tissues, contributes to lung mechanical properties, and its deposition is altered in asthma. The effect of Dcn deficiency on airway parenchymal interdependence was examined during induced bronchoconstriction. Studies were performed in C57Bl/6 mice in which the Dcn gene was disrupted by targeted deletion (Dcn(-/-)) and in wild-type controls (Dcn(+/+)). Mice were mechanically ventilated, and respiratory system impedance was measured during in vivo ventilation at positive end-expiratory pressure (PEEP) = 2 and 10 cmH(2)0, before and after aerosol delivery of methacholine (MCh). Length vs. tension curves in isolated tracheal rings were measured in vitro. Dcn distribution in +/+ mice airways was characterized by immunofluorescence; differences in collagen structure in Dcn(+/+) and Dcn(-/-) mouse lungs was examined by electron microscopy. MCh caused similar increases in airway resistance (Raw) and tissue elastance (H) in Dcn(+/+) and Dcn(-/-) mice. During MCh-induced constriction, increasing PEEP caused a decrease in Raw that was greater in Dcn(-/-) mice and a decrease in H in Dcn(-/-) mice only. Tracheal ring compliance was greater in Dcn (-/-) mice. Imaging studies showed that Dcn was deposited primarily in the airway adventitial layer in Dcn(+/+) mice; in Dcn(-/-) mice, collagen had an irregular appearance, especially in the lung periphery. These results show that lack of Dcn alters the normal interaction between airways and lung parenchyma; in asthma, changes in Dcn could potentially contribute to abnormal airway physiology.  相似文献   

8.
The maximal effect induced by methacholine (MCh) aerosols on pulmonary resistance (RL), and the effects of altering lung volume and O3 exposure on these induced changes in RL, was studied in five anesthetized and paralyzed dogs. RL was measured at functional residual capacity (FRC), and lung volumes above and below FRC, after exposure to MCh aerosols generated from solutions of 0.1-300 mg MCh/ml. The relative site of response was examined by magnifying parenchymal [RL with large tidal volume (VT) at fast frequency (RLLS)] or airway effects [RL with small VT at fast frequency (RLSF)]. Measurements were performed on dogs before and after 2 h of exposure to 3 ppm O3. MCh concentration-response curves for both RLLS and RLSF were sigmoid shaped. Alterations in mean lung volume did not alter RLLS; however, RLSF was larger below FRC than at higher lung volumes. Although O3 exposure resulted in small leftward shifts of the concentration-response curve for RLLS, the airway dominated index of RL (RLSF) was not altered by O3 exposure, nor was the maximal response using either index of RL. These data suggest O3 exposure does not affect MCh responses in conducting airways; rather, it affects responses of peripheral contractile elements to MCh, without changing their maximal response.  相似文献   

9.
We examined the effects of lung volume on the bronchoconstriction induced by inhaled aerosolized methacholine (MCh) in seven normal subjects. We constructed dose-response curves to MCh, using measurements of inspiratory pulmonary resistance (RL) during tidal breathing at functional residual capacity (FRC) and after a change in end-expiratory lung volume (EEV) to either FRC -0.5 liter (n = 5) or FRC +0.5 liter (n = 2). Aerosols of MCh were generated using a nebulizer with an output of 0.12 ml/min and administered for 2 min in progressively doubling concentrations from 1 to 256 mg/ml. After MCh, RL rose from a base-line value of 2.1 +/- 0.3 cmH2O. 1-1 X s (mean +/- SE; n = 7) to a maximum of 13.9 +/- 1.8. In five of the seven subjects a plateau response to MCh was obtained at FRC. There was no correlation between the concentration of MCh required to double RL and the maximum value of RL. The dose-response relationship to MCh was markedly altered by changing lung volume. The bronchoconstrictor response was enhanced at FRC - 0.5 liter; RL reached a maximum of 39.0 +/- 4.0 cmH2O X 1-1 X s. Conversely, at FRC + 0.5 liter the maximum value of RL was reduced in both subjects from 8.2 and 16.6 to 6.0 and 7.7 cmH2O X 1-1 X s, respectively. We conclude that lung volume is a major determinant of the bronchoconstrictor response to MCh in normal subjects. We suggest that changes in lung volume act to alter the forces of interdependence between airways and parenchyma that oppose airway smooth muscle contraction.  相似文献   

10.
Bronchial circulatory reversal of methacholine-induced airway constriction   总被引:2,自引:0,他引:2  
Although a role for the bronchial circulation in clearance of bronchoactive agents has been frequently proposed, experimental evidence is limited. In this study, we determined the importance of bronchial blood flow (QBA) in the recovery from methacholine-(MCh) induced bronchoconstriction. In 10 pentobarbital-anesthetized ventilated sheep, the bronchial branch of the bronchoesophageal artery was cannulated and perfused (0.7 ml.min-1.kg-1) with blood pumped from the femoral artery. MCh was infused directly into the bronchial artery at increasing concentrations (10(-7) to 10(-5) M). MCh infusion caused a concentration-dependent increase in airway resistance at constant QBA. However, the time constant of recovery (TC) from airway constriction after cessation of the MCh infusion was not dependent on the MCh concentration or the magnitude of the increases in airway resistance. When QBA was at 50, 100, and 200% of control level, with constant MCh concentration, TC was 44 +/- 6, 25 +/- 2, and 24 +/- 2 (SE) s at each flow level, respectively. TC at 50% of control QBA was significantly greater than at control QBA (P less than 0.01). Thus the magnitude of QBA can alter the time course of recovery from MCh-induced increases in airway resistance. These results document the importance of QBA in reversing agonist-induced constriction and suggest that an impaired bronchial circulation may contribute to the mechanism of airway hyperreactivity.  相似文献   

11.

Background

To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.

Methods

BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.

Results

Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.

Conclusion

Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.  相似文献   

12.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

13.
To better address the functional consequences of inflammation on bronchial responsiveness, we studied two groups of BALB/c mice: a nonimmunized control group (n = 8) and a group immunized and challenged with inhaled ovalbumin (n = 8). An alveolar capsule (AC) measured airway resistance (Raw(AC)) and lung elastance (EL). A forced oscillation (FO) technique independently estimated airway resistance (Raw(FO)) and a parameter H(ti) related to tissue elastance. Ovalbumin-immunized and -challenged mice had increased numbers of eosinophils in bronchoalveolar lavage and increased responsiveness to methacholine (MCh). Corresponding parameters from the AC and FO techniques were correlated: Raw(AC) vs. Raw(FO) (r = 0.76) and EL vs. H(ti) (r = 0.88, P < 0.0001 in all cases). AC and FO techniques showed significant increases in tissue elastance in response to MCh but no significant increases in airway resistance. These results demonstrated that the AC and FO techniques yield essentially equivalent results in mice, even when the lung is inhomogeneous, and that the bronchoconstrictive responses to MCh and inflammation in mice are predominantly located in the lung periphery.  相似文献   

14.
We developed a method for measuring airway resistance (R(aw)) in mice that does not require a measurement of airway flow. An analysis of R(aw) induced by alveolar gas compression showed the following relationship for an animal breathing spontaneously in a closed box: R(aw) = A(bt)V(b)/[V(t) (V(e) + 0.5V(t))]. Here A(bt) is the area under the box pressure-time curve during inspiration or expiration, V(b) is box volume, V(t) is tidal volume, and V(e) is functional residual capacity (FRC). In anesthetized and conscious unrestrained mice, from experiments with both room temperature box air and body temperature humidified box air, the contributions of gas compression to the box pressure amplitude were 15 and 31% of those due to the temperature-humidity difference between box and alveolar gas. We corrected the measured A(bt) and V(t) for temperature-humidity and gas compression effects, respectively, using a sinusoidal analysis. In anesthetized mice, R(aw) averaged 4.3 cmH(2)O.ml(-1).s, fourfold greater than pulmonary resistance measured by conventional methods. In conscious mice with an assumed FRC equal to that measured in the anesthetized mice, the corrected R(aw) at room temperature averaged 1.9 cmH(2)O.ml(-1).s. In both conscious mice and anesthetized mice, exposure to aerosolized methacholine with room temperature box air significantly increased R(aw) by around eightfold. Here we assumed that in the conscious mice both V(t) and FRC remained constant. In both conscious and anesthetized mice, body temperature humidified box air reduced the methacholine-induced increase in R(aw) observed at room temperature. The method using the increase in A(bt) with bronchoconstriction provides a conservative estimate for the increase in R(aw) in conscious mice.  相似文献   

15.
Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.  相似文献   

16.
We delivered controlled radio frequency energy to the airways of anesthetized, ventilated dogs to examine the effect of this treatment on reducing airway narrowing caused by a known airway constrictor. The airways of 11 dogs were treated with a specially designed bronchial catheter in three of four lung regions. Treatments in each of the three treated lung regions were controlled to a different temperature (55, 65, and 75 degrees C); the untreated lung region served as a control. We measured airway responsiveness to local methacholine chloride (MCh) challenge before and after treatment and examined posttreatment histology to 3 yr. Treatments controlled to 65 degrees C as well as 75 degrees C persistently and significantly reduced airway responsiveness to local MCh challenge (P < or = 0.022). Airway responsiveness (mean percent decrease in airway diameter after MCh challenge) averaged from 6 mo to 3 yr posttreatment was 79 +/- 2.2% in control airways vs. 39 +/- 2.6% (P < or = 0.001) for airways treated at 65 degrees C, and 26 +/- 2.7% (P < or = 0.001) for airways treated at 75 degrees C. Treatment effects were confined to the airway wall and the immediate peribronchial region on histological examination. Airway responsiveness to local MCh challenge was inversely correlated to the extent of altered airway smooth muscle observed in histology (r = -0.54, P < 0.001). We conclude that the temperature-controlled application of radio frequency energy to the airways can reduce airway responsiveness to MCh for at least 3 yr in dogs by reducing airway smooth muscle contractility.  相似文献   

17.
The evaluation of airway resistance (R(aw)) in conscious mice requires both end-expiratory (V(e)) and tidal volumes (V(t)) (Lai-Fook SJ and Lai YL. J Appl Physiol 98: 2204-2218, 2005). In anesthetized BALB/c mice we measured lung area (A(L)) from ventral-to-dorsal x-ray images taken at FRC (V(e)) and after air inflation with 0.25 and 0.50 ml (DeltaV(L)). Total lung volume (V(L)) described by equation: V(L) = DeltaV(L) + V(FRC) = KA(L)(1.5) assumed uniform (isotropic) inflation. Total V(FRC) averaged 0.55 ml, consisting of 0.10 ml tissue, 0.21 ml blood and 0.24 ml air. K averaged 1.84. In conscious mice in a sealed box, we measured the peak-to-peak box pressure excursions (DeltaP(b)) and x-rays during several cycles. K was used to convert measured A(L)(1.5) to V(L) values. We calculated V(e) and V(t) from the plot of V(L) vs. cos(alpha - phi). Phase angle alpha was the minimum point of the P(b) cycle to the x-ray exposure. Phase difference between the P(b) and V(L) cycles (phi) was measured from DeltaP(b) values using both room- and body-temperature humidified box air. A similar analysis was used after aerosol exposures to bronchoconstrictor methacholine (Mch), except that phi depended also on increased R(aw). In conscious mice, V(e) (0.24 ml) doubled after Mch (50-125 mg/ml) aerosol exposure with constant V(t), frequency (f), DeltaP(b), and R(aw). In anesthetized mice, in addition to an increased V(e), repeated 100 mg/ml Mch exposures increased both DeltaP(b) and R(aw) and decreased f to apnea in 10 min. Thus conscious mice adapted to Mch by limiting R(aw), while anesthesia resulted in airway closure followed by diaphragm fatigue and failure.  相似文献   

18.
Airway dysfunction in asthma is characterized by hyperresponsiveness, heterogeneously narrowed airways, and closure of airways. To test the hypothesis that airway constriction in ovalbumin (OVA)-sensitized OVA-intranasally challenged (OVA/OVA) mice produces mechanical responses that are similar to those reported in asthmatic subjects, respiratory system resistance (Rrs) and elastance (Edyn,rs) spectra were obtained in OVA/OVA and control mice during intravenous methacholine (MCh) infusions. In control mice, MCh at 1,700 microg x kg(-1) x min(-1) produced 1) a 495 and 928% increase of Rrs at 0.5 Hz and 19.75 Hz, respectively, 2) a 33% rise in Edyn,rs at 0.5 Hz, and 3) a mild frequency (f)-dependent increase of Edyn,rs. The same MCh dose in OVA/OVA mice produced 1) elevations of Rrs at 0.5 Hz and 19.75 Hz of 1,792 and 774%, respectively, 2) a 390% rise in Edyn,rs at 0.5 Hz, and 3) marked f-dependent increases of Edyn,rs. During constriction, the f dependence of mechanics in control mice was consistent with homogeneous airway narrowing; however, in OVA/OVA mice, f dependence was characteristic of heterogeneously narrowed airways, closure of airways, and airway shunting. These mechanisms amplify the pulmonary mechanical responses to constrictor stimuli at physiological breathing rates and have important roles in the pathophysiology of human asthma.  相似文献   

19.
A method for the noninvasive measurement of airway responsiveness was validated in allergic BALB/c mice. With head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)) as an indicator of airway obstruction, responses to inhaled methacholine (MCh) and the allergen ovalbumin were measured in conscious mice. Allergen-sensitized and -challenged mice developed airway hyperresponsiveness as measured by EF(50) to aerosolized MCh compared with that in control animals. This response was associated with increased allergen-specific IgE and IgG1 production, increased levels of interleukin-4 and interleukin-5 in bronchoalveolar lavage fluid and eosinophilic lung inflammation. Ovalbumin aerosol challenge elicited no acute bronchoconstriction but resulted in a significant decline in EF(50) baseline values 24 h after challenge in allergic mice. The decline in EF(50) to MCh challenge correlated closely with simultaneous decreases in pulmonary conductance and dynamic compliance. The decrease in EF(50) was partly inhibited by pretreatment with the inhaled beta(2)-agonist salbutamol. We conclude that measurement of EF(50) to inhaled bronchoconstrictors by head-out body plethysmography is a valid measure of airway hyperresponsiveness in mice.  相似文献   

20.
Shen, X., S. J. Gunst, and R. S. Tepper. Effect oftidal volume and frequency on airway responsiveness in mechanically ventilated rabbits. J. Appl. Physiol.83(4): 1202-1208, 1997.We evaluated the effects of the rate andvolume of tidal ventilation on airway resistance (Raw) duringintravenous methacholine (MCh) challenge in mechanically ventilatedrabbits. Five rabbits were challenged at tidal volumes of 5, 10, and 20 ml/kg at a frequency of 15 breaths/min and also under static conditions(0 ml/kg tidal volume). Four rabbits were subjected to MCh challenge atfrequencies of 6 and 30 breaths/min with a tidal volume of 10 ml/kg andalso under static conditions. In both groups, the increase in Raw with MCh challenge was significantly greater under static conditions thanduring tidal ventilation at any frequency or volume. Increases in thevolume or frequency of tidal ventilation resulted in significant decreases in Raw in response to MCh. We conclude that tidal breathing suppresses airway responsiveness in rabbits in vivo. The suppression ofnarrowing in response to MCh increases as the magnitude of the volumeor the frequency of the tidal oscillations is increased. Our findingssuggest that the effect of lung volume changes on airway responsivenessin vivo is primarily related to the stretch of airway smooth muscle.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号