首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using the previously reported sequence-specific 1H-NMR assignments, structural constraints for the cardiotoxin CTXIIb from Naja mossambica mossambica were collected. These include distance constraints from nuclear Overhauser enhancement measurements both in the laboratory and in the rotating frame, dihedral angle constraints derived from spin-spin coupling constants, and constraints from hydrogen bonds and disulfide bridges. Structure calculations with the distance geometry program DISMAN confirmed the presence of the previously identified antiparallel beta-sheets formed by residues 1-5 and 10-14, and by 20-27, 35-39 and 49-55, and established the nature of the connections between the individual beta-strands. These include a right-handed crossover between the two peripheral strands in the triple-stranded beta-sheet, and a type I tight turn immediately preceding the beta-strand 49-55. The spatial arrangement of the polypeptide backbone in the solution structure of CTXIIb is closely similar to that in the crystal structure of the homologous cardiotoxin VII4 from the same species. In an Appendix the origin of the large pH dependence of two amide proton chemical shifts in CTXIIb is explained.  相似文献   

2.
High-resolution phase-sensitive two-dimensional proton nuclear magnetic resonance was used to monitor the preparation by high-performance liquid chromatography of homogeneous proteins from the venom of Naja mossambica mossambica. This resulted in the characterization of a heterogeneous protein preparation VII2, which had been used in earlier structural studies by NMR, as well as a homogeneous protein CTXIIb and a nearly homogeneous protein fraction CTXIIa, which are now both subject to further investigations of their solution conformations.  相似文献   

3.
Sequence-specific assignments are presented for the polypeptide backbone protons and a majority of the amino-acid-side-chain protons of alpha-neurotoxin from Dendroaspis polylepis polylepis, and individual amide proton-exchange rates with the solvent are reported. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The molecule includes a three-stranded antiparallel beta-sheet, and there are indications that two additional short chain segments are arranged in an antiparallel beta-sheet. These structural elements are similar, but not identical, to either the secondary structure reported for erabutoxin b in single crystals, or the solution structure of cytotoxin CTXIIb from Naja mossambica mossambica.  相似文献   

4.
Two-dimensional NMR studies of the antimicrobial peptide NP-5   总被引:5,自引:0,他引:5  
A C Bach  M E Selsted  A Pardi 《Biochemistry》1987,26(14):4389-4397
Nearly complete proton resonance assignment of the rabbit antimicrobial peptide NP-5 has been made from two-dimensional NMR data taken at a single temperature. The assignment procedure involved acquisition of phase-sensitive double-quantum-filtered correlation spectra, relayed coherence-transfer spectra, total correlation (homonuclear Hartmann-Hahn) spectra, double- and triple-quantum spectra, and nuclear Overhauser effect spectra. The combination of these complementary experiments simplified and accelerated resonance assignment of the peptide. Individual assignments were made at 20 degrees C for all amide and C alpha protons in the peptide, and for all nonlabile side-chain protons on 26 of the 33 amino acid residues in NP-5. Analysis of the proton-proton nuclear Overhauser effect connectivities, the slowly exchanging amide protons, and the proton chemical shifts in NP-5 indicates that the peptide has a stable, ordered structure in solution. These data also indicate that residues 19-29 in NP-5 are involved in an antiparallel beta-sheet that has a hairpin conformation.  相似文献   

5.
The solution conformation of the Ascaris trypsin inhibitor, a member of a novel class of proteinase inhibitors, has been investigated by nuclear magnetic resonance spectroscopy. Complete sequence-specific assignments of the 1H NMR spectrum have been obtained by using a number of two-dimensional techniques for identifying through-bond and through-space (less than 5-A) connectivities. Elements of regular secondary structure have been identified on the basis of a qualitative interpretation of the nuclear Overhauser enhancement, coupling constant, and amide exchange data. These are two beta-sheet regions. One double-stranded antiparallel beta-sheet comprises residues 11-14 (strand 1) and 37-39 (strand 2). The other triple-stranded sheet is formed by two antiparallel strands comprising residues 45-49 (strand 4) and 53-57 (strand 5) connected by a turn (residues 50-52), and a small strand consisting of residues 20-22 (strand 3) that is parallel to strand 4.  相似文献   

6.
T Sivaraman  T K Kumar  C Yu 《Biochemistry》1999,38(31):9899-9905
The conformational stability of a small ( approximately 7 kDa), all beta-sheet protein, cardiotoxin analogue III (CTX III), from the venom of the Taiwan cobra has been investigated by hydrogen-deuterium (H/D) exchange using two-dimensional NMR spectroscopy. The H/D exchange kinetics of backbone amide protons in CTX III has been monitored at pD 3.6 and 6.6 (at 25 degrees C), for over 5000 h. Examination of H/D exchange kinetics in the protein showed that a number of slowly exchanging residues are in the hydrophobic core of the protein. The average protection factor of the amide protons of residues belonging to the triple-stranded beta-sheet domain is about 20 times greater than that of those in the double-stranded beta-sheet segment. The residues in the C-terminal tail of the molecule, though structureless, have been found to exhibit significant protection against H/D exchange. Comparison of the quenched-flow H/D exchange data on CTX III with those obtained in the present study reveals that the most slowly exchanging portion constitutes the folding core of the protein.  相似文献   

7.
Sequence-specific assignments are reported for the 500-MHz 1H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure of Sh I was defined on the basis of the pattern of sequential NOE connectivities, NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel beta-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a beta-bulge at residues 17 and 18 and a reverse turn, probably a type II beta-turn, involving residues 27-30. No evidence of alpha-helical structure was found.  相似文献   

8.
Nearly complete sequence-specific 1H NMR assignments are presented for amino acid residues 3-81 in the 81-residue globular activation domain of porcine pancreatic procarboxypeptidase B isolated after limited tryptic proteolysis of the zymogen. These resonance assignments are consistent with the chemically determined amino acid sequence. Regular secondary structure elements were identified from nuclear Overhauser effects and the sequence locations of slowly exchanging backbone amide protons. The molecule contains two alpha-helices, including residues 20-30 and approximately residues 58-72, and a three-stranded antiparallel beta-sheet with the individual strands extending approximately from 12 to 17, 50 to 55, and 75 to 77. The identification of these secondary structures and a preliminary analysis of additional long-range NOE distance constraints show that isolated activation domain B forms a stable structure with the typical traits of a globular protein. The data presented here are the basis for the determination of the complete three-dimensional structure of activation domain B, which is currently in progress.  相似文献   

9.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

10.
Jingzhaotoxin-I (JZTX-I) purified from the venom of the spider Chilobrachys jingzhao is a novel neurotoxin preferentially inhibiting cardiac sodium channel inactivation by binding to receptor site 3.The structure of this toxin in aqueous solution was investigated using 2-D ^1H-NMR techniques. The complete sequence-specific assignments of proton resonance in the ^1H-NMR spectra of JZTX-I were obtained by analyzing a series of 2-D spectra, including DQF-COSY, TOCSY and NOESY spectra, in n20 and D20. All the backbone protons except for Gin4 and more than 95% of the side-chain protons were identified by dαN,dαδ, dβN and dNN connectivities in the NOESY spectrum. These studies provide a basis for the furtherdeter mination of the solution conformation of JZTX-I. Furthermore, the secondary structure of JZTX-I was identified from NMR data. It consists mainly of a short triple-stranded antiparallel β-sheet with Trp7-Cys9, Phe20-Lys23 and Leu28-Trp31. The characteristics of the secondary structure of JZTX-I are similar to those of huwentoxin-I (HWTX-I) and hainantoxin-IV (HNTX-IV), whose structures in solution havepre viously been reported.  相似文献   

11.
Blood coagulation factor X is composed of discrete domains, two of which are homologous to the epidermal growth factor (EGF). The N-terminal EGF like domain in factor X (fX-EGFN), residues 45-86 of the intact protein, contains a beta-hydroxylated aspartic acid and has one Ca2(+)-binding site. Using 2D NMR techniques, we have made a full assignment of the 500-MHz 1H NMR spectrum of Ca2(+)-free fX-EGFN. On the basis of this assignment and complementary NOESY experiments, we have also determined the secondary structure of Ca2(+)-free fX-EGFN in water solution. Residues 45-49 are comparatively mobile, whereas residues 50-56 are constrained by two disulfide bonds to one side of an antiparallel beta-sheet involving residues 59-64 and 67-72. Another antiparallel beta-sheet involves residues 76-77 and 83-84. A small, parallel beta-sheet connects residues 80-81 and 55-56 and thereby orients the two antiparallel beta-sheets relative to each other. Four beta-turns are identified, involving residues 50-53, 56-59, 64-67, and 73-76. Residues 78-82 adopt an extended bend structure. On the basis of secondary structure and the location of the three disulfide bonds, we find that Asp 46, Asp 48, and Hya 63 are sufficiently close to each other to form a Ca2(+)-binding site. However, the amino terminus of the Ca2(+)-free form of fX-EGFN is not part of a triple-stranded beta-sheet as in other EGF like peptides. Differences and similarities between fX-EFGN and murine EGF with respect to secondary structure and conformational shifts are discussed.  相似文献   

12.
B H Oh  J L Markley 《Biochemistry》1990,29(16):3993-4004
Complete sequence-specific assignments were determined for the diamagnetic 1H resonances from Anabaena 7120 ferredoxin (Mr = 11,000). A novel assignment procedure was followed whose first step was the identification of the 13C spin systems of the amino acids by a 13C(13C) double quantum correlation experiment [Oh, B.-H., Westler, M. W., Darba, P., & Markley, J. L. (1988) Science 240, 908-911]. Then, the 1H spin systems of the amino acids were identified from the 13C spin systems by means of direct and relayed 1H(13C) single-bond correlations [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085]. The sequential resonance assignments were based mainly on conventional interresidue 1H alpha i-1HNi + 1 NOE connectivities. Resonances from 18 residues were not resolved in two-dimensional 1H NMR spectra. When these residues were mapped onto the X-ray crystal structure of the homologous ferredoxin from Spirulina platensis [Fukuyama, K., Hase, T., Matsumoto, S., Tsukihara, T., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., & Matsubara, H. (1980) Nature 286, 522-524], it was found that they correspond to amino acids close to the paramagnetic 2Fe.2S* cluster. Cross peaks in two-dimensional homonuclear 1H NMR spectra were not observed for any protons closer than about 7.8 A to both iron atoms. Secondary structural features identified in solution include two antiparallel beta-sheets, one parallel beta-sheet, and one alpha-helix.  相似文献   

13.
The purification, amino acid sequence, and two-dimensional 1H NMR results are reported for the rubredoxin (Rd) from the hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100 degrees C. The molecular mass (5397 Da), iron content (1.2 +/- 0.2 g-atom of Fe/mol), UV-vis spectrophotometric properties, and amino acid sequence (60% sequence identity with Clostridium pasteurianum Rd) are found to be typical of this class of redox protein. However, P. furiosus Rd is remarkably thermostable, being unaffected after incubation for 24 h at 95 degrees C. One- and two-dimensional 1H nuclear magnetic resonance spectra of the oxidized [Fe(III)Rd] and reduced [Fe(II)Rd] forms of P. furiosus Rd exhibited substantial paramagnetic line broadening, and this precluded detailed 3D structural studies. The apoprotein was not readily amenable to NMR studies due to apparent protein oxidation involving the free cysteine sulfhydryls. However, high-quality NMR spectra were obtained for the Zn-substituted protein, Zn(Rd), enabling detailed NMR signal assignment for all backbone amide and alpha and most side-chain protons. Secondary structural elements were determined from qualitative analysis of 2D Overhauser effect spectra. Residues A1-K6, Y10-E14, and F48-E51 form a three-strand antiparallel beta-sheet, which comprises ca. 30% of the primary sequence. Residues C5-Y10 and C38-A43 form types I and II amide-sulfur tight turns common to iron-sulfur proteins. These structural elements are similar to those observed by X-ray crystallography for native Rd from the mesophile C. pasteurianum. However, the beta-sheet domain in P. furiosus Rd is larger than that in C. pasteurianum Rd and appears to begin at the N-terminal residue. From analysis of the secondary structure, potentially stabilizing electrostatic interactions involving the charged groups of residues Ala(1), Glu(14), and Glu(52) are proposed. These interactions, which are not present in rubredoxins from mesophilic organisms, may prevent the beta-sheet from "unzipping" at elevated temperatures.  相似文献   

14.
M H Werner  D E Wemmer 《Biochemistry》1991,30(14):3356-3364
The 1H resonance assignments and secondary structure of the trypsin/chymotrypsin Bowman-Birk inhibitor from soybeans were determined by nuclear magnetic resonance spectroscopy (NMR) at 600 MHz in an 18% acetonitrile-d3/aqueous cosolvent. Resonances from 69 of 71 amino acids were assigned sequence specifically. Residues Q11-T15 form an antiparallel beta-sheet with residues Q21-S25 in the tryptic inhibitory domain and an analogous region of antiparallel sheet forms between residues S38-A42 and Q48-V52 in the chymotryptic inhibitory domain. The inhibitory sites of each fragment (K16-S17 for trypsin, L43-S44 for chymotrypsin) are each part of a type VI like turn at one end of their respective region of the antiparallel beta-sheet. These structural elements are compared to those found in other Bowman-Birk inhibitors.  相似文献   

15.
Nuclear magnetic resonance data on the protease inhibitor IIA from bull seminal plasma were used to determine the secondary structure elements in the solution conformation of the protein. The experimental data were obtained from analyses of two-dimensional 1H nuclear magnetic resonance spectra at 500 and 360 MHz and include details of inter-residue nuclear Overhauser enhancements, vicinal spin-spin coupling constants and the sequence location of slowly exchanging amide protons. Accurate measurement of coupling constants and reliable assignments of nuclear Overhauser enhancements were facilitated by the use of absorption mode two-dimensional spectroscopy and large data matrices. It is shown that the peptide backbone is extended from residues 4 to 7, followed by a poorly defined helical region from residues 8 to 13 with a marked change of direction at residue Phe10. Residues 15 to 19 are extended and there is a kink at residue Glu20. Residues 22 to 27 form the central strand of a triple-stranded antiparallel beta-sheet, of which the other two strands are residues 29 to 33 and 49 to 53. Residues 34 to 46 form a helix. The tight turn in the beta-sheet is of type I geometry, and there is a beta-bulge at residue His53.  相似文献   

16.
The solution structure of porcine pancreatic phospholipase A2 (124 residues, 14 kDa) has been studied by two-dimensional homonuclear 1H and two- and three-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Backbone assignments were made for 117 of the 124 amino acids. Short-range nuclear Overhauser effect (NOE) data show three alpha-helices from residues 1-13, 40-58, and 90-109, an antiparallel beta-sheet for residues 74-85, and a small antiparallel beta-sheet between residues 25-26 and 115-116. A 15N-1H heteronuclear multiple-quantum correlation experiment was used to monitor amide proton exchange over a period of 22 h. In total, 61 amide protons showed slow or intermediate exchange, 46 of which are located in the three large helices. Helix 90-109 was found to be considerably more stable than the other helices. For the beta-sheets, four hydrogen bonds could be identified. The secondary structure of porcine PLA in solution, as deduced from NMR, is basically the same as the structure of porcine PLA in the crystalline state. Differences were found in the following regions, however. Residues 1-6 in the first alpha-helix are less structured in solution than in the crystal structure. Whereas in the crystal structure residues 24-29 are involved both in a beta-sheet with residues 115-117 and in a hairpin turn, the expected hydrogen bonds between residues 24-117 and 25-29 do not show slow exchange behavior. This and the absence of several expected NOEs imply that this region has a less well defined structure in solution. Finally, the hydrogen bond between residues 78-81, which is part of a beta-sheet, does not show slow exchange behavior.  相似文献   

17.
Two toxins from the venom of Naja mossambica mossambica, neurotoxin I and cardiotoxin VII4, were investigated in aqueous solution by high-resolution 1H nuclear magnetic resonance (NMR) techniques at 360 MHz. The spectral characterization of the proteins included determination of the number of slowly exchanging amide protons which can be observed in 2H2O solution, measurement of the amide proton chemical shifts and exchange rates, characterization of the aromatic spin systems and the internal mobilities of aromatic rings, and studies of the pH dependence of the NMR spectra. For numerous resonances of labile and non-labile protons quite outstanding pH titration shifts were observed. It is suggested that these NMR parameters provide a useful basis for comparative structural studies of different proteins in the large group of homologous snake toxins. As a first application the NMR data presently available in the literature on neurotoxin II from Naja naja oxiana, toxin alpha from Naja nigricollis and erabutoxin a and b from Laticauda semifasciata have been used to compare these three proteins with neurotoxin I from Naja mossambica mossambica. This preliminary comparative study provides evidence that the same type of spatial structure prevails for these four homologous neurotoxins and that the folding of the backbone corresponds quite closely to that observed in the crystal structure of erabutoxin b. A second application is the comparison of cardiotoxin VII4 from Naja mossambica mossambica with the neurotoxins. The experimental data indicate that the folding of the polypeptide backbone is closely similar, but that the cardiotoxin molecule is markedly more flexible than the neurotoxins.  相似文献   

18.
The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 phi backbone and 21 chi 1 side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67 +/- 0.12 A for the backbone atoms and 0.90 +/- 0.17 A for all atoms. The core of the protein is formed by a triple-stranded antiparallel beta-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel beta-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel beta-sheet are connected by a long exposed loop (residues 17-30). A number of side-chain interactions are discussed in light of the structure.  相似文献   

19.
THe characteristic feature of the crystal structure of erabutoxin b, a short neurotoxin from Laticauda semifasciata, and alpha-cobratoxin, a long neurotoxin from Naja naja siamensis, is the presence of a triple-stranded antiparallel pleated beta-sheet structure formed by the central and the third peptide loops. In the present study, we have studied the assignment of slowly exchangeable amide protons of Laticauda semifasciata III from L. semifasciata, using nuclear Overhauser effects (NOE) and spin-decoupling methods. The results show that nearly all of the slowly exchangeable amide protons are to be assigned to the back-bone amide protons, involved in the triple-stranded antiparallel pleated beta-sheet structure, indicating that this sheet is stable in 2H2O solution. In contrast, the amide protons in short neurotoxins are readily exchangeable under the same experimental condition, suggesting that long neurotoxins have a more rigid sheet structure than short ones. This rigidity may come from the hydrophobic and hydrogen bond interaction between the central loop and the tail, which is not present in short neurotoxins. Since the functionally important residues are located on this beta-sheet, the different kinetic properties of the neurotoxins are well correlated with the difference in the rigidity of the beta-sheet.  相似文献   

20.
The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific 1H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns (residues 8-12 and 24-27), a 3(10)-helix (residues 13-16), and a triple-stranded beta-sheet (residues 8-10, 29-27, and 21-25). This secondary structure is similar to that of CMTI-I [Holak, T. A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648], which has a Glu instead of a Lys at position 9. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30 degrees C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. Many of these residues are functionally important in that they make contact with atoms of the enzyme in the trypsin-inhibitor complex, as revealed by X-ray crystallography [Bode, W., Greyling, H. J., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 285-292].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号