首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The adjacent genes rpoB and rpoC code for the beta and beta' subunits of RNA polymerase in Escherichia coli, and are cotranscribed in the order given. The nearest known genes to rpoB are rplL and rplA,J,K, which code for ribosomal proteins, and which are transcribed in the same direction as the polymerase genes. It has been suggested that rpoBC may be distal elements of a larger operon including these ribosomal genes. To test this possibility we have cloned a segment of DNA, derived by endoR. HindIII digestion from the rpoBC-transducing bacteriophage lambdarifd18, in the replacement vector NMlambda761. The structure of the lambdarpoBC bacteriophages so produced is such that the inserted DNA can be transcribed from lambda promoters, allowing us to confirm that it carries intact rplL, rpoB, and rpoC genes. We have studied these bacteriophages as lysogens in rec+ and rec bacteria, and by infection of UV-irradiated bacterial strains in which lambda promoters are either repressed or active. The results indicate that the cloned DNA contains at most a very weak promoter for the above genes, in contrast to that present in the larger segment of bacterial DNA carried by lambdarifd18. We have in the same way cloned the adjacent bacterial HindIII-fragment of lambdarifd18 DNA, and have found that it displays vigorous autonomous expression of the tufB, rplA, and rplK genes. We conclude that rpoB and C are obligatorily co-transcribed with rplL, from a promoter located outside the DNA segment cloned in lambdarpoBC. We discuss the evidence for the existence of a regulatory site, rpoU, located between rplL and rpoB.  相似文献   

8.
9.
10.
11.
12.
Autogenous regulation of RNA polymerase beta subunit synthesis in vitro.   总被引:4,自引:0,他引:4  
The effects of Escherichia coli RNA polymerase and its subassemblies and subunits on the in vitro synthesis of beta subunit directed by DNA from a lambda transducing phage lambdadrif+-6 were investigated. This phage carries the structural gene (rpoB) for beta subunit as well as the genes for EF (translation elongation factor)-Tu, some ribosomal proteins, and stable RNAs of the E. coli chromosome. Among the RNA polymerase proteins examined, the two oligomers, holoenzyme and alpha2beta complex, repressed the synthesis of only the beta subunit but not of other proteins encoded by the phage DNA. The results indicate that the expression of at least the betabeta' (rpoBC) operon is under autogenous regulation, in which both holoenzyme and alpha2beta complex function as regulatory molecules with repressor activity.  相似文献   

13.
14.
15.
16.
In order to delineate the region involved in feedback regulation of the RNA polymerase beta subunit (encoded by rpoB), a collection of rpoB-lacZ translational fusions with different endpoints both upstream and downstream of the rpoB start site was assembled on lambda phage vectors. The extent of translational repression of beta was monitored by measuring beta-galactosidase levels in monolysogens of the fusions under conditions of increased intracellular concentrations of beta and beta' achieved via the induction of rpoBC expression from a multicopy plasmid. A construct containing as little as 29 bp upstream of the start of rpoB exhibited repression of beta-galactosidase activity to the same extent as a construct encoding the full upstream region. A construct which carried only 70 bp of the rpoB structural gene exhibited very little repression, while constructs which carried 126 or 221 bp of rpoB exhibited approximately the same degree of repression as a construct which carried 403 bp. These data suggest that the sequences important for feedback regulation of beta translation extend more than 70 bp into rpoB but are completely contained within a region which spans the sequences from 29 bp upstream to 126 bp downstream of the translational start site.  相似文献   

17.
18.
J N Engel  J Pollack  F Malik    D Ganem 《Journal of bacteriology》1990,172(10):5732-5741
Taking advantage of sequence conservation of portions of the alpha, beta, and beta' subunits of RNA polymerase of bacteria and plant chloroplasts, we have designed degenerate oligonucleotides corresponding to these domains and used these synthetic DNA sequences as primers in a polymerase chain reaction to amplify DNA sequences from the chlamydial genome. The polymerase chain reaction products were used as a probe to recover the genomic fragments encoding the beta subunit and the 5' portion of the beta' subunit from a library of cloned murine Chlamydia trachomatis DNA. Similar attempts to recover the alpha subunit were unsuccessful. Sequence analysis demonstrated that the beta subunit of RNA polymerase was located between genes encoding the L7/L12 ribosomal protein and the beta' subunit of RNA polymerase; this organization is reminiscent of the rpoBC operon of Escherichia coli. The C. trachomatis beta subunit overproduced in E. coli was used as an antigen in rabbits to make a polyclonal antibody to this subunit. Although this polyclonal antibody specifically immunoprecipitated the beta subunit from Chlamydia-infected cells, it did not immunoprecipitate core or holoenzyme. Immunoblots with this antibody demonstrated that the beta subunit appeared early in infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号