首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of two N-forms (NH4 + and NO3 ) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland's nutrient solution containing 8 mM N as NH4 + or NO3 ·, and salinized with and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH4-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO3-supplied plants had significa concentration of leaf P than that of NH4-supplied plants at varying salt treatments. Salinity of the rooting med did not show any significant effect on Na+ concentrations of leaves or roots of plants subjected to two differen N. NH4-treated plants generally had greater concentrations of Cl in leaves and roots and lower K+ content in leaves than NO3-supplied plants. Ca2+ concentrations of leaves and roots and Mg2+ concentrations of leaves decreased in NH4-supplied plants due to NaCl, but they remained unaffected in NO3-treated plants.  相似文献   

2.
B. J. Atwell 《Plant and Soil》1992,139(2):247-251
Two cultivars of Lupinus angustifolius L. were grown in a glasshouse in solutions containing NO3 -, NH4 + or NH4NO3 with a total nitrogen concentration of 2.8 M m-3 in each treatment. One cultivar chosen (75A-258) was relatively tolerant to alkaline soils whereas the other (Yandee) was intolerant to alkalinity. Controlled experiments were used to assess the impact of cationic vs. anionic forms of nitrogen on the relative performance of these cultivars. Relative growth rates (dry weight basis) were not significantly different between the two cultivars when grown in the presence of NO3 -, NH4 + or NH4NO3. However, when NO3 - was supplied, there was a modest decline in relative growth rates in both cultivars over time. When plants grown on the three sources of nitrogen for 9 days were subsequently supplied with 15NH4NO3 or NH4 15NO3 for 30 h, NH4 + uptake was generally twice as fast as NO3 - uptake, even for plants grown in the presence of NO3 -. Low rates of NO3 - uptake accounted for the decrease in growth rates over time when plants were grown in the presence of NO3 -. It is concluded that the more rapid growth of 75A-258 than Yandee in alkaline conditions was not due to preferential uptake of NH4 + and acidification of the external medium. In support of this view, acidification of the root medium was not significantly different between cultivars when NH4 + was the sole nitrogen source.  相似文献   

3.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

4.
Abstract: NH4+‐grown plants are more sensitive to light stress than NO3?‐grown plants, as indicated by reduced growth and intervenal chlorosis of French bean (Phaseolus vulgaris L.). Measuring the time course of Fv/Fm ratios under photoinhibitory light regimes did not reveal any difference in PS II damage between NO3?‐ and NH4+‐grown plants, in spite of some indications of higher energy quenching in NO3?‐grown plants. Also, a direct action of NH4+ as an uncoupler at the thylakoid membrane could be excluded. Instead, biochemical analysis revealed enhanced lipid peroxidation and higher activity of scavenging enzymes in NH4+‐grown plants indicating that these plants make use of metabolic pathways with stronger radical formation. Evidence for higher rates of photorespiration in NH4+‐grown plants came from experiments showing that electron flux and O2 evolution were decreased by SHAM in NH4+‐grown plants, and by antimycin A in NO3?‐grown plants. Further, the comparison of electron flux and of photoacoustic measurements of O2 evolution suggested that in NH4+‐grown plants the Mehler reaction was also increased, at least in the induction phase. However, the major cause of N form‐dependent stress sensitivity is assumed to be in the coupling between photosynthesis and respiration, i.e., NO3?‐grown plants can utilize the TCA cycle for the generation of C skeletons for amino acid synthesis, thus improving the ATP: reductant balance, whereas NH4+‐grown plants have enhanced rates of photorespiration.  相似文献   

5.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

6.
The function of alternative path respiration in roots was investigated in pea plants (Pisum sativum L. cv. Rondo). Plants were grown in symbiosis with Rhizobium leguminosarum (strain PF2), completely dependent on N2 fixation, or non-nodulated, receiving nitrate or ammonium at the same rate as N2 was fixed in symbiosis. Under these conditions, relative growth rates of plants grown with N2, NO-3 or NH+4 were the same. This facilitated interpretation of the effect of the N source on the efficiency of root respiration, as determined by the relative activity of the non-phosphorylating alternative path. The ‘wasteful’ oxidation of carbohydrate via this pathway was defined as the glucose equivalent of the difference between the amounts of ATP (mol O2)-1 produced in cytochrome and alternative path respiration. ‘Wasteful’ carbohydrate oxidation maximally amounted to 4% (N2), 15% (NO-3) and 25% (NH+4) of the daily carbohydrate oxidation in the roots. It is concluded that the ‘wasteful’ oxidation of carbohydrate via the alternative path is of minor importance for the adaptation of root respiratory metabolism to different energy requirements of N assimilation. The total carbohydrate import by roots fixing N2 was ca 60 and 30% higher than the import by roots assimilating NO-3 or NH+4, respectively. Two factors are shown to account for these differences: the high carbohydrate cost of N2 fixation, and the small contribution (30%) of the roots to NO-3 reduction by the plant. The high carbohydrate requirements of roots fixing N2 were met by higher rates of photosynthesis as compared with plants utilizing NO-3 or NH+4.  相似文献   

7.
8.
This work aimed to study the regulation of K+/Na+ homeostasis and the physiological responses of salt-treated sorghum plants [Sorghum bicolor (L.) Moench] grown with different inorganic nitrogen (N) sources. Four days after sowing (DAS), the plants were transferred to complete nutrient solutions containing 0.75 mM K+ and 5 mM N, supplied as either NO3 ? or NH4 +. Twelve DAS, the plants were subjected to salt stress with 75 mM NaCl, which was applied in two doses of 37.5 mM. The plants were harvested on the third and seventh days after the exposure to NaCl. Under the salt stress conditions, the reduction of K+ concentrations in the shoot and roots was higher in the culture with NO3 ? than with NH4 +. However, the more conspicuous effect of N was on the Na+ accumulation, which was severely limited in the presence of NH4 +. This ionic regulation had a positive influence on the K+/Na+ ratio and the selective absorption and transport of K+ in the plants grown with NH4 +. Under control and salt stress conditions, higher accumulation of free amino acids and soluble proteins was promoted in NH4 + grown roots than NO3 ? grown roots at both harvesting time, whereas higher accumulation of soluble sugars was observed only at 7 days of salt stress exposure. Unlike the NH4 + grown plants, the gas exchanges of the NO3 ? grown plants were reduced after 7 days of salt stress. These results suggest that external NH4 + may limit Na+ accumulation in sorghum, which could contribute to improving its physiological and metabolic responses to salt stress.  相似文献   

9.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

10.
Carbon-14 pulse labeling technique was used to study the effect of rooting medium salinity and form and availability of N on growth and rhizodeposition of wheat (Triticum aestivum L.). Thirty days old plants grown in continuously aerated Arnon and Hoagland nutrient solution were subjected to 14C pulse labeling for 24 h and transferred to aqueous rooting medium containing 0, 150, and 300 mM NaCl in all combinations with different forms (calcium nitrate, ammonium sulphate, and ammonium nitrate) and amounts (0.5, 1.0, 1.5, and 2.0 times the standard N concentration (150 ppm) of Arnon and Hoagland plant growth medium). Plant samples immediately after pulse labeling, following 7 days of growth under different rooting medium conditions, and the freeze-dried rooting medium were analyzed for total C and 14C. Length and fresh/dry weight of root and shoot portions and calculated values of unaccounted 14C were determined. Presence of NaCl in the rooting medium led to a decrease in root and shoot portions. However, NO3 -fed plants showed better growth than NH4 +-fed plants at all the three salinity levels. Salinity in rooting medium led to higher rhizodeposition and lower loss of 14C. Relatively higher proportion of 14C was released as rhizodeposits and retained in root/shoot portions of plants fed with NH4 + or NH4 ++NO3 , than those with NO3 , while less was respired. The specific activity of the rhizodeposits (kBq 14C g−1 C) was also higher under saline conditions. The rhizodeposits in NH4 +-fed plants were more highly labeled as compared to NO3 -plants.  相似文献   

11.
《Plant and Soil》2000,220(1-2):175-187
Several studies have previously shown that shoot removal of forage species, either by cutting or herbivore grazing, results in a large decline in N uptake (60%) and/or N2 fixation (80%). The source of N used for initial shoot growth following defoliation relies mainly on mobilisation of N reserves from tissues remaining after defoliation. To date, most studies investigating N-mobilisation have been conducted, with isolated plants grown in controlled conditions. The objectives of this study were for Lolium perenne L., grown in a dense canopy in field conditions, to determine: 1) the contribution of N-mobilisation, NH4 + uptake and NO3 - uptake to growing shoots after defoliation, and 2) the contribution of the high (HATS) and low (LATS) affinity transport systems to the total plant uptake of NH4 + and NO3 -. During the first seven days following defoliation, decreases in biomass and N-content of roots (34% and 47%, respectively) and to a lesser extent stubble (18% and 43%, respectively) were observed, concomitant with mobilisation of N to shoots. The proportion and origin of N used by shoots (derived from reserves or uptake) was similar to data reported for isolated plants. Both HATS and LATS contributed to the total root uptake of NH4 + and NO3 -. The Vmax of both the NH4 + and NO3 - HATS increased as a function of time after defoliation, and both HATS systems were saturated by substrate concentrations in the soil at all times. The capacity of the LATS was reduced as soil NO3 - and NH4 + concentrations decreased following defoliation. Data from 15N uptake by field-grown plants, and uptake rates of NH4 + and NO3 - estimated by excised root bioassays, were significantly correlated, though uptake was over-estimated by the later method. The results are discussed in terms of putative mechanisms for regulating N uptake following severe defoliation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Clonal tillers of a genotype of perennial ryegrass (Lolium perenne), either with or without the endophytic fungus Acremonium lolii, were grown under natural light in flowing nutrient solutions with mineral N maintained automatically at concentrations of 3 or 30μm NH4NO3 for 28 days. Uptake of N was monitored daily and dry matter production was assessed by sequential harvesting. The presence of endophyte had no significant effect on shoot or root biomass production at either N level, but shoot: root ratios were significantly increased by endophyte infection at both N levels at some harvests. All plants absorbed NH4+ preferentially to NO3- and the ratio was not affected by endophyte infection. Also, infection did not affect total N content of plants, which was significantly more in plants at the higher N level than at the lower level. It is concluded that endophyte infection had only minor effects on growth and N economy of the plant, under the conditions imposed in this experiment.  相似文献   

13.
The effect of external inorganic nitrogen and K+ content on K+ uptake from low-K+ solutions and plasma membrane (PM) H+-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.4 mM K+ and inorganic nitrogen as NO3-, NO3-/NH4+ or NH4+ and then starved of K+ for 24, 48 and 72 h. NH4+ in full nutrient solution significantly affected the uptake efficiency and accumulation of K+, and this effect was less pronounced at the high K+ concentration. In contrast, the translocation rate of K+ to the shoot was not altered. Depletion assays showed that plants grown with NH4+ more efficiently depleted the external K+ and reached higher initial rates of low-K+ uptake than plants grown with NO3-. One possible influence of K+ content of shoot, but not of roots, on K+ uptake was evidenced. Enhanced K+-uptake capacity was correlated with the induction of H+ extrusion by PM H+-ATPase. In plants grown in high K+ solutions, the increase in the active H+ gradient was associated with an increase of the PM H+-ATPase protein concentration. In contrast, in plants grown in solutions containing 0.2 mM K+, only the initial rate of H+-pumping and ATP hydrolysis were affected. Under these conditions, two specific isoforms of PM H+-ATPase were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3--grown plants. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+-pumping activity of PM H+-ATPase.  相似文献   

14.
Variations in the inorganic and organic composition of xylem exudate, growth and N content under contrasting forms of N supply in three cucumber cultivars (Hyclos, Medusa and Victory) were studied in glasshouse conditions. The plants were grown hydroponically with two NO3 -:NH4 + ratios (100:0 and 60:40).The xylem sap of Medusa grown with both N sources displayed an increase of organic N and carboxylate concentrations and a decrease of cations, inorganic anions and carbohydrates compared with that of those grown with NO3 - alone, showing a higher growth and N content in tissues and thus better utilization of N supplied as NO3 - and NH4 +. Mixed N nutrition in Hyclos caused the greatest amounts of NO3 - and NH4 + in xylem sap, lower root weight and N levels in the leaves, while its root was unable to generate an adequate supply of organic N compounds. Despite the levels of cations, inorganic and organic anions were reduced by the NH4 + supplied to Victory, the ionic balance in the xylem sap, growth and N content remained similar to that of those supplied with NO3 - alone. Finally, the cucumber cultivars studied here, responded differently to the form of N supplied, it may partly be due to their ability of assimilating N in the roots and partly to the form in which the N is translocated to the shoot.  相似文献   

15.
Carbon isotope composition (δ13C) was measured in a glasshouse experiment with N2-fixing and NO3- or NH4+-fed Casuarina equisetifolia Forst. & Forst plants, both under well-watered and drought conditions. The abundance of 13C was higher (more positive δ13C) for NH4+- than for NO3 -grown plants and was lowest for N2-fixing plants. NH4+-fed plants had more leaf area and dry weight and higher water use efficiency (on a biomass basis) than N2- and NO3-grown plants and had lower water consumption than plants supplied with NO3, either with high or low water supply. Specific leaf areas and leaf area ratios were higher with NH4+ than with NO3 or N2 as the N source. The difference observed in δ13C between plants grown with different N sources was higher than that predicted by theory and was not in the right direction (NH4+-grown plants with a more negative δ13C) to be explained by differences in plant composition and engagement of the various carboxylation reactions. The more positive δ13C in NH4+- than in NO3-grown plants is probably due to a decreased ratio of stomatal to carboxylation conductances, which accounts for the lower water cost of C assimilation in NH4+-grown plants.  相似文献   

16.
Ancheng  Luo  Jianming  Xu  Xiaoe  Yang 《Plant and Soil》1993,155(1):395-398
Although NH4 + has generally been accepted as the preferred N source for fertilising rice, some workers have concluded tha NO3 - is as effective as NH4 +. The present glasshouse study exmined the relative uptake of NH4 + and NO3 - from solution and cultures containing 5–120 mg N/L supplied as NH4NO3 by a hybrid rice (India) and a conventional rice cultivar (Japonica). At all levels of N supply, the hybrid rice had higher leaf area and higher rates of uptake of total N than the conventional cultivar. Net photosynthesis rates were similar for both cultivars at the highest rates of N supply, but were lower at 5–40 mg N/L for the hybrid cultivar than for the conventional cultivar. At all levels of N supply, the conventional rice cultivar absorbed more NH4 + than NO3 -. In contrast, the hybrid rice absorbed more NH4 + than NO3 - at the low levels of N supply (5–40 mg N/L), but more NO3 - than NH4 + at the high levels of at 80 and 120 mg N/L. It is concluded that the uptake of N by rice is under genetic control and also dependent on levels of N supply. Thus the appropriate form of N fertiliser for rice may depend on cultivar and rates of N supply.  相似文献   

17.
The effect of copper on the uptake of nitrogen and the tissue contents of inorganic nitrogen, amino acids and proteins were studied in cooper-sensitive Silene vulgaris (Moench) Garcke, grown at different nitrogen sources (NH4 + or NO3 -). All the toxic copper levels tested, i.e. 4, 8, 16 M Cu2+, strongly inhibited the uptake of nitrogen, especially of NO3 -, and decreased the content of NO3 -, amino acids and proteins. Especially at 4 and 8 M Cu2+, NH4 + accumulated in the plants, suggesting that the conversion of NH4 - into amino acids was inhibited.  相似文献   

18.
We investigated whether six arctic plant species have the potential to induce nitrate reductase (NR) activity when exposed to NO3 --nitrogen under controlled environment conditions, using an in vivo assay that uses the rate of NO2 --accumulation to estimate potential NR activity. We also assessed the effect of low root temperatures on NR activity, growth and nitrogen uptake (using 15N applications) in two of the selected species. Five of the six species (Cerastium alpinum, Dryas intergrifolia, Oxyria digyna, Saxifraga cernua and Salix arctica) were capable of inducing NR activity when exposed to solutions containing 0.5 mM NO3 - at 20°C for 10 days. Although in vivo NR activity was not induced in Saxifraga oppositifolia under controlled conditions, we conclude that it was capable of growing successfully on NO3 -, due to the presence of moderate rates of NR activity observed in both NH4 +-grown and NO3 --treated plants. Exposure of O. digyna and D. integrifolia to 3°C root temperatures for two weeks, with the shoots kept at 20°C, resulted in root and leaf NR activity rates of NO3 --treated plants being reduced to rates exhibited by NH4 +-grown plants. Although these decreases in NR in both species appeared to be due to limitations in NO3 --uptake and growth rate (rather than direct low-temperature inhibition of NR synthesis per se), direct low-temperature inhibition of root NR synthesis could not be ruled out. In contrast to the temperature insensitivity of NH4 + uptake in D. integrifolia, NO3 --uptake in D. integrifolia was inhibited by low root temperatures. We conclude that the selected arctic species have the genetic potential to utilize NO3 --nitrogen, and that low root temperatures, in conjunction with other environmental limitations, may be responsible for the lack of induction of NR in D. integrifolia and Salix arctica under field conditions.  相似文献   

19.
An hydroponic experiment with a simulated water stress induced by PEG (6000) was conducted in a greenhouse to study the effects of nitrate (NO3 ), ammonium (NH4 +) and the mixture of NO3 and NH4 +, on water stress tolerance of rice seedlings. Rice (Shanyou 63) was grown under non- or simulated water stress condition (10% (w/v) PEG, MW6000) with the 3 different N forms during 4 weeks. Under non-stressed condition no difference was observed among the N treatments. Under simulated water stress, seedlings grown on N-NO3 were stunted. Addition of PEG did not affect rice seedling growth in the treatment of only NH4 + supply but slightly inhibited the rice seedling growth in the treatment of mixed supply of NO3 and NH4 +. Simulated water stress, when only N-NH4 + was present, did not affect leaf area and photosynthesis rate, however, both parameters decreased significantly in the NO3 containing solutions. Under water stress, Rubisco content in newly expanded leaves significantly increased in the sole NH4 + supplied plants as compared to that in plants of the other two N treatments. Under water stress, the ratio of carboxylation efficiency to Rubisco content was, respectively, decreased by 13 and 23% in NH4 + and NO3 treatments, respectively. It is concluded that, water stress influenced the Rubisco activity than stomatal limitation, and this effects could be regulated by N forms. Responsible Editor: Herbert Johannes Kronzucker. Shiwei Guo and Gui Chen contributed equally to this paper.  相似文献   

20.
A study was conducted to elucidate the effect of N form, either NH4 + or NO3 , on growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] grown under 10 mM or 100 mM NaCl in hydroponics. Shoot biomass was not affected by N form, whereas NH4 + compared to NO3 nutrition caused an almost 4-fold reduction in the root biomass at both salinity levels. Under NH4 + nutrition, salinity had no effect on the biomass yield, whereas under NO3 nutrition, increasing salinity from 10 mM to 100 mM caused 23% and 36% reduction in the root and shoot biomass, respectively. The reduced root growth under NH4 + nutrition was not attributable to impaired shoot to root C allocation since N form did not affect the overall root sugar concentration and the starch concentration was even higher under NH4 + compared to NO3 nutrition. The low NH4 + (2 mM) and generally higher amino-N concentrations in NH4 +- compared to NO3 -fed plants indicated that the grass was able to effectively detoxify NH4 +. Salinity had no effect on Ca2+ and Mg2+ levels, whereas their concentration in shoots was lower under NH4 + compared to NO3 nutrition (over 66% reduction in Ca2+; over 20% reduction in Mg2+), but without showing deficiency symptoms. Ammonium compared to NO3 nutrition did not inhibit K+ uptake, and the K+-Na+ selectivity either remained unaffected or it was higher under NH4 + than under NO3 nutrition. Results suggested that while NH4 + versus NO3 nutrition substantially reduced root growth, and also strongly modified anion concentrations and to a minor extent concentrations of divalent cations in shoots, it did not influence salt tolerance of kallar grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号