首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centromere protein B (CENP-B) is one of the centromere DNA binding proteins constituting centromeric heterochromatin of human chromosomes. This protein was originally identified as the target antigen in autoimmune disease patients (often with scleroderma). In this study, we cloned a human CENP-B cDNA which was longer than the previously isolated one and expressed functional recombinant CENP-B in Escherichia coli. The DNA binding domain was finely located within the N-terminal 134-amino-acid residues covering a predicted helix-loop-helix (HLH) structure, by using a set of recombinant products with stepwise deletions from the C-terminus. From the analysis of their reactivity to anti-centromere sera from autoimmune disease patients, four epitopes were mapped on CENP-B antigen. In addition to two epitopes at the C-terminus, two were found on the HLH region at the N-terminus. In the analysis of the interaction between the antigen and autoantibodies, we found that the DNA binding activity of CENP-B was distorted by the attack of the anti-HLH domain antibodies in in vitro binding reactions. Our results suggest that the direct inhibition of the DNA binding activity by the autoantibodies might be involved in patients' autoimmune reactions in vivo.  相似文献   

2.
3.
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.  相似文献   

4.
A deoxyribonuclease inhibitor has been purified from KB cells by chromatography on single-stranded DNA-cellulose. Polyacrylamide gel electrophoresis showed the purified preparation to contain two major polypeptides in sodium dodecyl sulfate, with molecular weights of 72,000 and 65,000, but only one major band (with a molecular weight of approximately 140,000) after electrophoresis under nondenaturing conditions. The protein inhibits the hydrolysis of single-stranded DNA by KB DNase, DNase I, DNase II, and nuclease S1, but has no effect on the hydrolysis of double-stranded DNA by these enzymes. The inhibitor causes a reduction in the rate of hydrolysis of DNA by the deoxyribonuclease, probably by reducing the effective concentration of substrate.  相似文献   

5.
tsFT20 cells derived from mouse FM3A cells are DNA temperature-sensitive mutants, which have heat-labile DNA polymerase alpha activity. When tsFT20 cells were incubated at restrictive temperatures, intracellular levels of DNA polymerase alpha activity changed biphasically, showing an initial fast decrease (phase I) and a subsequent slow decrease (phase II). The activity of DNA polymerase alpha from tsFT20 cells cultured at a permissive temperature (33 degrees C) was greatly increased by the addition of glycerol or ethylene glycol to the reaction mixture, while little increase in enzyme activity was observed at any concentration of glycerol or ethylene glycol tested with the enzyme from the cells cultured at a restrictive temperature (39 degrees C) for 8 h (phase II). The activity of DNA polymerase alpha from wild-type cells was also increased by the addition of glycerol but the increase was much less than that in the tsFT20 cells. An in vitro preincubation experiment showed that DNA polymerase alpha from tsFT20 cells cultured at 33 degrees C very rapidly lost its ability to be stimulated by glycerol. Furthermore, the experiment using the extracts prepared from tsFT20 cells cultured at 39 degrees C for various periods showed that the ability to be stimulated by glycerol decreased with the duration of incubation time at 39 degrees C. DNA polymerase alpha from the revertants, which can grow at 39 degrees C and exhibit a partial recovery in heat stability of DNA polymerase alpha activity, showed an intermediate response to glycerol, between those of DNA polymerase alpha from tsFT20 and from the wild-type cells. Finally, it was observed that the level of enzyme activity that can be stimulated by glycerol correlated well with the DNA synthesizing ability of tsFT20 cells.  相似文献   

6.
The IE2 86-kDa gene product is an essential regulatory protein of human cytomegalovirus (HCMV) with several functions, including transactivation, negative autoregulation, and cell cycle regulation. In order to understand the physiological significance of each of the IE2 functions, discriminating mutants of IE2 are required that can be tested in a viral background. However, no such mutants of IE2 are available, possibly reflecting structural peculiarities of the large and ill-defined C-terminal domain of IE2. Here, we revisited the C-terminal domain by analyzing IE2 mutants for transactivation, DNA binding, autoregulation, and cell cycle regulation in parallel. We found it to contain an unexpectedly concise core domain (amino acids 450 to 544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (amino acids 290 to 449) generally tolerates mutations much better. Although it contributes more specific sequence information to distinct IE2 activities, none of the mutations analyzed abolished any particular function. The core is demarcated from the adjacent region by the putative zinc finger region (amino acids 428 to 452). Surprisingly, the deletion of the putative zinc finger region from IE2 revealed that this region is entirely dispensable for any of the IE2 functions tested here in transfection assays. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants discriminating between various IE2 functions that can then be tested in a viral background.  相似文献   

7.
8.
The erect wing (ewg) locus of Drosophila melanogaster encodes a vital function important for the development of the nervous system and the indirect flight muscles. In order to understand the ewg function at a molecular level, cDNA clones were isolated. Sequence analysis of cDNAs revealed a single open reading frame (ORF) encoding a protein of 733 residues. The translational start for this ORF is a CTG codon. A 225-amino-acid region of this protein is 71% identical to the DNA binding region of the Strongylocentrotus purpuratus P3A2 DNA binding protein. Additionally, the ORF contains large acidic and basic domains characteristic of those in proteins involved in nuclear regulatory functions. Immunoblot analysis using polyclonal anti-EWG antisera generated against a bacterial fusion protein reveals a single, 116-kDa protein present throughout development, beginning at approximately stage 12 of embryogenesis, which is enriched in adult heads and absent from embryos carrying certain ewg alleles. Additionally, we show that EWG is localized specifically to the nuclei of virtually all embryonic neurons. Finally, a minigene consisting of an ewg cDNA under control of the hsp70 promoter can provide the ewg function in transgenic ewg mutant flies.  相似文献   

9.
Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype.  相似文献   

10.
Patrick SM  Oakley GG  Dixon K  Turchi JJ 《Biochemistry》2005,44(23):8438-8448
Replication protein A (RPA) is a heterotrimeric protein consisting of 70-, 34-, and 14- kDa subunits that is required for many DNA metabolic processes including DNA replication and DNA repair. Using a purified hyperphosphorylated form of RPA protein prepared in vitro, we have addressed the effects of hyperphosphorylation on steady-state and pre-steady-state DNA binding activity, the ability to support DNA repair and replication reactions, and the effect on the interaction with partner proteins. Equilibrium DNA binding activity measured by fluorescence polarization reveals no difference in ssDNA binding to pyrimidine-rich DNA sequences. However, RPA hyperphosphorylation results in a decreased affinity for purine-rich ssDNA and duplex DNA substrates. Pre-steady-state kinetic analysis is consistent with the equilibrium DNA binding and demonstrates a contribution from both the k(on) and k(off) to achieve these differences. The hyperphosphorylated form of RPA retains damage-specific DNA binding, and, importantly, the affinity of hyperphosphorylated RPA for damaged duplex DNA is 3-fold greater than the affinity of unmodified RPA for undamaged duplex DNA. The ability of hyperphosphorylated RPA to support DNA repair showed minor differences in the ability to support nucleotide excision repair (NER). Interestingly, under reaction conditions in which RPA is maintained in a hyperphosphorylated form, we also observed inhibition of in vitro DNA replication. Analyses of protein-protein interactions bear out the effects of hyperphosphorylated RPA on DNA metabolic pathways. Specifically, phosphorylation of RPA disrupts the interaction with DNA polymerase alpha but has no significant effect on the interaction with XPA. These results demonstrate that the effects of DNA damage induced hyperphosphorylation of RPA on DNA replication and DNA repair are mediated through alterations in DNA binding activity and protein-protein interactions.  相似文献   

11.
beta subunits (Ca(v)beta) increase macroscopic currents of voltage-dependent Ca2+ channels (VDCC) by increasing surface expression and modulating their gating, causing a leftward shift in conductance-voltage (G-V) curve and increasing the maximal open probability, P(o,max). In L-type Ca(v)1.2 channels, the Ca(v)beta-induced increase in macroscopic current crucially depends on the initial segment of the cytosolic NH2 terminus (NT) of the Ca(v)1.2alpha (alpha1C) subunit. This segment, which we term the "NT inhibitory (NTI) module," potently inhibits long-NT (cardiac) isoform of alpha1C that features an initial segment of 46 amino acid residues (aa); removal of NTI module greatly increases macroscopic currents. It is not known whether an NTI module exists in the short-NT (smooth muscle/brain type) alpha(1C) isoform with a 16-aa initial segment. We addressed this question, and the molecular mechanism of NTI module action, by expressing subunits of Ca(v)1.2 in Xenopus oocytes. NT deletions and chimeras identified aa 1-20 of the long-NT as necessary and sufficient to perform NTI module functions. Coexpression of beta2b subunit reproducibly modulated function and surface expression of alpha1C, despite the presence of measurable amounts of an endogenous Ca(v)beta in Xenopus oocytes. Coexpressed beta2b increased surface expression of alpha1C approximately twofold (as demonstrated by two independent immunohistochemical methods), shifted the G-V curve by approximately 14 mV, and increased P(o,max) 2.8-3.8-fold. Neither the surface expression of the channel without Ca(v)beta nor beta2b-induced increase in surface expression or the shift in G-V curve depended on the presence of the NTI module. In contrast, the increase in P(o,max) was completely absent in the short-NT isoform and in mutants of long-NT alpha1C lacking the NTI module. We conclude that regulation of P(o,max) is a discrete, separable function of Ca(v)beta. In Ca(v)1.2, this action of Ca(v)beta depends on NT of alpha1C and is alpha1C isoform specific.  相似文献   

12.
The myc family of oncogenes is well conserved throughout evolution. Here we present the characterization of a domain conserved in c-, N-, and L-Myc from fish to humans, N-Myc317-337, designated Myc box IV (MBIV). A deletion of this domain leads to a defect in Myc-induced apoptosis and in some transformation assays but not in cell proliferation. Unlike other Myc mutants, MycDeltaMBIV is not a simple loss-of-function mutant because it is hyperactive for G2 arrest in primary cells. Microarray analysis of genes regulated by N-MycDeltaMBIV reveals that it is weakened for transactivation and repression but not nearly as defective as N-MycDeltaMBII. Although the mutated region is not part of the previously defined DNA binding domain, we find that N-MycDeltaMBIV has a significantly lower affinity for DNA than the wild-type protein in vitro. Furthermore, chromatin immunoprecipitation shows reduced binding of N-MycDeltaMBIV to some target genes in vivo, which correlates with the defect in transactivation. Thus, this conserved domain has an unexpected role in Myc DNA binding activity. These data also provide a novel separation of Myc functions linked to the modulation of DNA binding activity.  相似文献   

13.
The 90-kDa heat-shock protein, hsp90, is an abundant cytoplasmic protein that can be phosphorylated in vitro by a double-stranded (ds) DNA-activated protein kinase found in cells from several species. Here we show that the dsDNA-activated protein kinase from human HeLa cells phosphorylates 2 threonine residues in the sequence PEETQTQDQPME at the amino terminus of human hsp90 alpha. Hsp90 beta, which is 97% identical to hsp90 alpha but lacks both amino-terminal threonines, is not phosphorylated by the dsDNA-activated protein kinase. Mouse hsp86 and rabbit hsp90 alpha are homologous to human hsp90 alpha; both heterologous proteins are phosphorylated at the same amino-terminal threonines by the human dsDNA-activated protein kinase.  相似文献   

14.
Inal JM  Sim RB 《FEBS letters》2000,470(2):131-134
Human complement regulatory (also called inhibitory) proteins control misdirected attack of complement against autologous cells. Trypanosome and schistosome parasites which survive in the host vascular system also possess regulators of human complement. We have shown Sh-TOR, a protein with three predicted transmembrane domains, located on the Schistosoma parasite surface, to be a novel complement regulatory receptor. The N-terminal extracellular domain, Sh-TOR-ed1, binds the complement protein C2 from human serum and specifically interacts with the C2a fragment. As a result Sh-TOR-ed1 pre-incubated with C2 inhibits classical pathway (CP)-mediated haemolysis of sheep erythrocytes in a dose-dependent manner. In CP-mediated complement activation, C2 normally binds to C4b to form the CP C3 convertase and Sh-TOR-ed1 has short regions of sequence identity with a segment of human C4b. We propose the more appropriate name for TOR of CRIT (complement C2 receptor inhibitory trispanning).  相似文献   

15.
The major yolk protein (MYP) in sea urchins has historically been classified as a vitellogenin based on its abundance in the yolk platelets. Curiously, it is found in both sexes of sea urchins where it is presumed to play a physiological role in gametogenesis, embryogenesis, or both. Here we present the primary structure of MYP as predicted from cDNAs of two sea urchins species, Strongylocentrotus purpuratus and Lytechinus variegatus. The sequence from these two species share identity to one another, but bear no resemblance to other known vitellogenins. Instead the sequence shares identity to members of the transferrin superfamily of proteins. In vitro iron binding assays, including both (59)Fe overlay assays of MYP enriched coelomic fluid and immunoprecipitation of native iron-bound MYP from coelomic fluid, support this classification. We suggest that one of MYP's transferrin-like properties is to shuttle iron to developing germ cells.  相似文献   

16.
B Hang  A T Yeung    M W Lambert 《Nucleic acids research》1993,21(18):4187-4192
A DNA binding protein with specificity for DNA containing interstrand cross-links induced by 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light has been identified in normal human chromatin. Protein binding to DNA was determined using a gel mobility shift assay and an oligonucleotide containing a hot spot for formation of psoralen interstrand cross-links. Specificity of the damage-recognition protein for cross-links was demonstrated both by a positive correlation between level of cross-link formation in DNA and extent of protein binding and by effective competition by treated but not undamaged DNA for the binding protein. Chromatin protein extracts from cells from individuals with the genetic disorder, Fanconi anemia, complementation group A (FA-A), which have decreased ability to repair damage produced by TMP plus UVA light, failed to show any protein binding to TMP plus UVA treated DNA. We have previously shown that these chromatin protein extracts contain a DNA endonuclease complex, pI 4.6, which specifically recognizes and incises DNA containing interstrand cross-links and which in FA-A cells is defective in its ability to incise this damaged DNA (Lambert et al. (1992) Mutation Res., 273, 57-71). Together, these findings suggest that the DNA binding protein identified is involved in recognition and repair of DNA interstrand cross-links.  相似文献   

17.
Group 1B human pancreatic secretory phospholipase A2 (hp-sPLA2), a digestive enzyme synthesized by pancreatic acinar cells and present in pancreatic juice, do not have antibacterial activity towards Escherichia coli. Our earlier results suggest that the N-terminal first ten amino acid residues of hp-sPLA2 constitute major portion of the membrane binding domain of full-length enzyme and is responsible for the precise orientation of enzyme on the membrane surface by inserting into the lipid bilayers (Pande et al. (2006) Biochemistry, 45,12436–12447). In this study we report the antibacterial properties of a peptide (AVWQFRKMIK-CONH2; N10 peptide), which corresponds to the N-terminal first ten amino acid residues of hp-sPLA2, against E. coli. Full-length hp-sPLA2, which contains this peptide sequence as N-terminal α-helix, did not showed detectable antibacterial activity. Presence of physiological concentration of salt or preincubation of N10 peptide with soluble anionic polymer inhibits the antibacterial activity indicating the importance of electrostatic interaction in binding of peptide to bacterial membrane. Addition of peptide resulted in destabilization of outer as well as inner cytoplasmic membrane of E. coli suggesting bacterial membranes to be the main target of action. N10 peptide exhibits strong synergism with lysozyme and potentiates the antibacterial activity of lysozyme. The peptide was inactive against human erythrocyte. Our result shows for the first time that a peptide fragment of hp-sPLA2 possesses antibacterial activity towards E. coli and at subinhibitory concentration and can potentiate the antibacterial activity of membrane active enzyme. These observations suggest that N10 peptide may play an important role in the antimicrobial activity of pancreatic juice.  相似文献   

18.
Circoviruses are the smallest circular single-stranded DNA viruses able to replicate in mammalian cells. Essential to their replication is the replication initiator, or Rep protein that initiates the rolling circle replication (RCR) of the viral genome. Here we report the NMR solution three-dimensional structure of the endonuclease domain from the Rep protein of porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome in swine. The domain comprises residues 12-112 of the full-length protein and exhibits the fold described previously for the Rep protein of the representative geminivirus tomato yellow leaf curl Sardinia virus. The structure, however, differs significantly in some secondary structure elements that decorate the central five-stranded beta-sheet, including the replacement of a beta-hairpin by an alpha-helix in PCV2 Rep. The identification of the divalent metal binding site was accomplished by following the paramagnetic broadening of NMR amide signals upon Mn(2+) titration. The site comprises three conserved acidic residues on the exposed face of the central beta-sheet. For the 1:1 complex of the PCV2 Rep nuclease domain with a 22mer double-stranded DNA oligonucleotide chemical shift mapping allowed the identification of the DNA binding site on the protein and aided in constructing a model of the protein/DNA complex.  相似文献   

19.
The most abundant single-stranded DNA binding protein (SSB) found in ovaries of the frog, Xenopus laevis, was purified to electrophoretic homogeneity. Under physiological conditions, the purified SSB lowered the Tm of poly[d(A-T)] and stimulated DNA synthesis by the homologous DNA polymerase DNA primase alpha complex on single-stranded DNA templates. These properties are characteristic of a bona fide single-stranded DNA binding protein. The Stokes radius of native SSB was calculated to be 45 A, corresponding to a molecular mass of about 140 kDa. On SDS polyacrylamide gels, the SSB migrated as a single band with a molecular mass of 36 kDa. We assumed, therefore, that the SSB was a tetramer of 36 kDa subunits. We subsequently discovered that the SSB was LDH, D-lactate dehydrogenase, EC 1.1.1.28. Purified SSB has high LDH specific activity. Following electrophoresis on SDS polyacrylamide gels, the 36 kDa subunits were renatured and exhibited LDH activity. The amino-acid composition of X. laevis SSB/LDH was similar to that of LDH from other species and to other reported single-stranded DNA binding proteins. Mammalian SSB/LDH also preferentially bound single-stranded DNA. Mammalian SSB/LDH bound to RNA as demonstrated by affinity chromatography on poly(A)-agarose and by its effect on translation of mRNA in vitro.  相似文献   

20.
A group of Cu,Zn-superoxide dismutases from pathogenic bacteria is characterized by histidine-rich N-terminal extensions that are in a highly exposed and mobile conformation. This feature allows these proteins to be readily purified in a single step by immobilized metal affinity chromatography. The Cu,Zn-superoxide dismutases from both Haemophilus ducreyi and Haemophilus parainfluenzae display anomalous absorption spectra in the visible region due to copper binding at the N-terminal region. Reconstitution experiments of copper-free enzymes demonstrate that, under conditions of limited copper availability, this metal ion is initially bound at the N-terminal region and subsequently transferred to an active site. Evidence is provided for intermolecular pathways of copper transfer from the N-terminal domain of an enzyme subunit to an active site located on a distinct dimeric molecule. Incubation with EDTA rapidly removes copper bound at the N terminus but is much less effective on the copper ion bound at the active site. This indicates that metal binding by the N-terminal histidines is kinetically favored, but the catalytic site binds copper with higher affinity. We suggest that the histidine-rich N-terminal region constitutes a metal binding domain involved in metal uptake under conditions of metal starvation in vivo. Particular biological importance for this domain is inferred by the observation that its presence enhances the protection offered by periplasmic Cu,Zn-superoxide dismutase toward phagocytic killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号