首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The inner ear of the leopard frog,Rana pipiens, receives sound via two separate pathways: the tympanic-columellar pathway and an extratympanic route. The relative efficiency of the two pathways was investigated. Laser interferometry measurements of tympanic vibration induced by free-field acoustic stimulation reveal a broadly tuned response with maximal vibration at 800 and 1500 Hz. Vibrational amplitude falls off rapidly above and below these frequencies so that above 2 kHz and below 300 Hz tympanic vibration is severely reduced. Electrophysiological measurements of the thresholds of single eighth cranial nerve fibers from both the amphibian and basilar papillae in response to pure tones were made in such a way that the relative efficiency of tympanic and extratympanic transmission could be assessed for each fiber. Thresholds for the two routes are very similar up to 1.0 kHz, above which tympanic transmission eventually becomes more efficient by 15–20 dB. By varying the relative phase of the two modes of stimulation, a reduction of the eighth nerve response can be achieved. When considered together, the measurements of tympanic vibration and the measurements of tympanic and extratympanic transmission thresholds suggest that under normal conditions in this species (1) below 300 Hz extratympanic sound transmission is the main source of inner ear stimulation; (2) for most of the basilar papilla frequency range (i.e., above 1.2 kHz) tympanic transmission is more important; and (3) both routes contribute to the stimulation of amphibian papilla fibers tuned between those points. Thus acoustic excitation of the an uran's inner ear depends on a complex interac tion between tympanic and extratympanic sound transmission.Abbreviations dB SPL decibels sound pressure level re: 20 N/ m2 - AP amphibian papilla - BP basilar papilla - BEF best excitatory frequency  相似文献   

2.
Anesthetized clawed frogs (Xenopus laevis) were stimulated with underwater sound and the tympanic disk vibrations were studied using laser vibrometry. The tympanic disk velocities ranged from 0.01 to 0.5 mm/s (at a sound pressure of 2 Pa) in the frequency range of 0.4–4 kHz and were 20–40 dB higher than those of the surrounding tissue. The frequency response of the disk had two peaks, in the range of 0.6–1.1 kHz and 1.6–2.2 kHz, respectively. The first peak corresponded to the peak vibrations of the body wall overlying the lung. The second peak matched model predictions of the pulsations of the air bubble in the middle ear cavity. Filling the middle ear cavity with water lowered the disk vibrations by 10–30 dB in the frequency range of 0.5–3 kHz.Inflating the lungs shifted the low-frequency peak downwards, but did not change the high-frequency peak. Thus, the disk vibrations in the frequency range of the mating call (main energy at 1.7–1.9 kHz) were mainly caused by pulsations of the air in the middle ear cavity; sound transmission via the lungs was more important at low frequencies (below 1 kHz). Furthermore, the low-frequency peak could be reversibly reduced in amplitude by loading the larynx with metal or tissue glue. This shows that the sound-induced vibrations of the lungs are probably coupled to the middle ear cavities via the larynx. Also, anatomical observations show that the two middle ear cavities and the larynx are connected in an air-filled recess in submerged animals.This arrangement is unique to pipid frogs and may be a structural adaptation to connect all the air spaces of the frog and improve low-frequency underwater hearing. Another function of the recess may be to allow cross-talk between the two middle ear cavities. Thus, the ear might be directional. Our pilot experiments show up to 10 dB difference between ipsi- and contralateral stimulus directions in a narrow frequency range around 2 kHz.  相似文献   

3.
Tympanal ears of female gypsy moths Lymantria dispar dispar (L.) (Lepidoptera: Erebidae: Lymantriinae) are reportedly more sensitive than ears of conspecific males to sounds below 20 kHz. The hypothesis is tested that this differential sensitivity is a result of sex‐specific functional roles of sound during sexual communication, with males sending and females receiving acoustic signals. Analyses of sounds produced by flying males reveal a 33‐Hz wing beat frequency and 14‐kHz associated clicks, which remain unchanged in the presence of female sex pheromone. Females exposed to playback sounds of flying conspecific males respond with wing raising, fluttering and walking, generating distinctive visual signals that may be utilized by mate‐seeking males at close range. By contrast, females exposed to playback sounds of flying heterospecific males (Lymantria fumida Butler) do not exhibit the above behavioural responses. Laser Doppler vibrometry reveals that female tympana are particularly sensitive to frequencies in the range produced by flying conspecific males, including the 33‐Hz wing beat frequency, as well as the 7‐kHz fundamental frequency and 14‐kHz dominant frequency of associated clicks. These results support the hypothesis that the female L. dispar ear is tuned to sounds of flying conspecific males. Based on previous findings and the data of the present study, sexual communication in L. dispar appears to proceed as: (i) females emitting sex pheromone that attracts males; (ii) males flying toward calling females; and (iii) sound signals from flying males at close range inducing movement in females, which, in turn, provides visual signals that could orient males toward females.  相似文献   

4.
We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from 42 dB at 100 Hz to 25 dB at 400 Hz. Since sound thresholds decrease from 72 dB SPL at 100 Hz to 50 dB SPL at 400 Hz the decrease in relative vibration sensitivity reflects an increase in sound sensitivity with frequency, probably due to enhanced tympanic sensitivity at higher frequencies. In contrast, absolute vibration sensitivity is constant in most of the frequency range studied. Only small effects result from the cancellation of sound-induced vibrations. The reason for this probably is that the maximal induced vibrations in the present setup are 6–10 dB below the fibers' vibration threshold at the threshold for sound. However, these results are only valid for the present physical configuration of the setup and the high vibration-sensitivities of the fibers warrant caution whenever the auditory fibers are stimulated with free-field sound. Thus, the experiments suggest that the low-frequency sound sensitivity is not caused by sound-induced vertical vibrations. Instead, the low-frequency sound sensitivity is either tympanic or mediated through bone conduction or sound-induced pulsations of the lungs.Abbreviations AP amphibian papilla - BF best frequency - PST peristimulus time  相似文献   

5.
Abstract. Directional hearing is investigated in males of two species of cicadas, Tympanistalna gastrica (Stål) and Tettigetta josei Boulard, that are similar in size but show different calling song spectra. The vibrational response of the ears is measured with laser vibrometry and compared with thresholds determined from auditory nerve recordings. The data are used to investigate to what extent the directional characteristic of the tympanal vibrations is encoded by the activity of auditory receptors. Laser measurements show complex vibrations of the tympanum, and reveal that directional differences are rather high (>15 dB) in characteristic but limited frequency ranges. At low frequencies, both species show a large directional difference at the same frequency (3–5 kHz) whereas, above 10 kHz, the directional differences correspond to the different resonant frequencies of the respective tymbals. Consequently, due to the mechanical resonance of the tymbal, the frequency range at which directional differences are high differs between the two species that otherwise show similar dimensions of the acoustic system. The directional differences observed in the tympanal vibrations are also observed in the auditory nerve activity. These recordings confirm that the biophysically determined directional differences are available within the nervous system for further processing. Despite considerable intra as well as interindividual variability, the ears of the cicadas investigated here exhibit profound directional characteristics, because the thresholds determined from recordings of the auditory nerve at 30° to the right and left of the longitudinal axis differ by more than 5 dB.  相似文献   

6.
1. Laser vibrometry and acoustic measurements were used to study the biophysics of directional hearing in males and females of a cicada, in which most of the male tympanum is covered by thick, water filled tissue “pads”. 2. In females, the tympanal vibrations are very dependent on the direction of sound incidence in the entire frequency range 1–20 kHz, and especially at the main frequencies of the calling song (3–7 kHz). At frequencies up to 10 kHz, the directionality disappears if the contralateral tympanum, metathoracic spiracle, and folded membrane are blocked with Vaseline. This suggests some pressure-difference receiver properties in the ear. 3. In males, the tympanal vibrations depend on the direction of sound incidence only within narrow frequency bands (around 1.8 kHz and at 6–7 kHz). At frequencies above 10–12 kHz, the directionality appears to be determined by diffraction, and the ear seems to work as a pressure receiver. The peak in directionality at 6–7 kHz disappears when the contralateral timbal, but not the tympanum, is covered. Covering the thin ventral abdominal wall causes the peak around 1.8 kHz to disappear. 4. Most observed tympanal directionalities, except around 1.8 kHz in males, are well predicted from measured transmissions of sound through the body and measured values of sound amplitude and phase at the ears at various directions of sound incidence. Accepted: 18 October 1996  相似文献   

7.
To test whether structural specializations of sand-cat ears are adaptations to their desert habitats we measured structural and acoustic features of their ears. The area of the external ear's pinna flange is similar to that of domestic cat. The dimensions of the ear canal are about twice domestic cat's, as is the volume of the middle-ear air space. The magnitude of the acoustic input-admittance at the tympanic membrane is about five times larger than that of domestic cat; both the middle-ear cavities and the ossicular chain contribute to the increase. Structure-based models suggest the acoustic admittance looking outward through the external ear is generally larger for sand cat than for domestic cat; the radiation power-efficiency is also larger in sand cat for frequencies below 2 kHz. Hearing sensitivity (estimated from measurements and model calculations) in sand cat is predicted to be about 8 dB greater than in domestic cat for frequencies below 2 kHz. Analysis of attenuation of sound in deserts implies that the increased sensitivity extends sand cat's hearing range beyond domestic cat by 0.4 km at 0.5 kHz. Thus, the structural specializations may provide habitat-specific survival value.  相似文献   

8.
From behavioural experiments it is known that the thresholds for both positive and the negative phonotaxis in crickets (Gryllus bimaculatus) decrease during the first days of adult life. Neuronal recordings have shown that a part of the changes in threshold has its origin in the ears. In this study we investigate some changes of the mechanics of the ears in the days after the imaginal moult.The posterior tympanum starts to work as an acoustic window only after the imaginal moult. During the first days the vibration amplitude tends to increase, except below 4 kHz and between 6 and 12 kHz. In the mature hearing organ, the tympanal vibrations exceed those of the surrounding cuticle up to ca. 50 kHz, and peaks of vibration amplitude are found around 5 and 15 kHz (the frequencies of the calling and courtship songs). The appearance of these peaks is caused, at least in part, by a change in the mechanics of the tympanum.Sound propagation through the trachea connecting the ipsilateral acoustic spiracle and the inner surface of the tympanum does not change much during the first week of adult life. In contrast, the propagation from the contralateral spiracle improves considerably. Thus the tympanum of the newly moulted cricket receives only little sound from the contralateral spiracle, and therefore the ear lacks the sound component which is essential for directional hearing in the mature cricket.  相似文献   

9.
ABSTRACT. The auditory characteristics of two populations (laboratory reared and wild) of North American gypsy moths (Lymantriidae: Lymantria dispar L.) were sampled and the neurally derived thresholds of wild males and females to frequencies from 5 to 150 kHz compared. The noctuoid auditory receptors, Al and A2-cell, and putative proprioceptor, B-cell, were identified. Both sexes possess neurally responsive ears but females exhibit median best frequencies significantly lower than those of males. Audiogram comparisons reveal significantly different thresholds at 5–15 kHz, 30–120 kHz and 130–140 kHz, with females less sensitive to all but the lowest frequencies. Wild male populations reveal less audiogram variability than laboratory-reared individuals, while females' tuning curves appear more similar. The high variability present in colony moths warrants caution in the use of laboratory-reared insects for studies that assume natural levels of selection pressure. We suggest that male L. dispar possess adaptively functional ears tuned to the frequencies in the echo-location signals of bats but that the flightless females of this species are not exposed to bat predation and therefore possess ears in a state of evolutionary degeneration.  相似文献   

10.
Abstract. The auditory system of three closely related bushcrickets was investigated with respect to morphological and physiological differences. The size of the acoustic vesicle in the prothorax cavity and the size of the acoustic spiracle were compared to differences in auditory tuning of the tympanic nerve and differences in the directionality. The results indicate that a small auditory vesicle and auditory spiracle provide reduced sensitivity in the high frequency range (above 10—15 kHz), but increase sensitivity at low frequencies (below 10 kHz). The directionality of the hearing system deteriorates at frequencies between 10 and 25 kHz in species with a small spiracle and trachea. The evolutionary implications of these differences of the auditory systems are discussed. They are considered to be influenced more by ecological factors than bioacoustical ones.  相似文献   

11.
Acoustic communication is an important behavior in frog courtship. Male and female frogs of most species, except the concave-eared torrent frog Odorrana tormota, have largely similar audiograms. The large odorous frogs (Odorrana graminea) are sympatric with O. tormota, but have no ear canals. The difference in hearing between two sexes of the frog is unknown. We recorded auditory evoked near-field potentials and single-unit responses from the auditory midbrain (the torus semicircularis) to determine auditory frequency sensitivity and threshold. The results show that males have the upper frequency limit at 24 kHz and females have the upper limit at 16 kHz. The more sensitive frequency range is 3–15 kHz for males and 1–8 kHz for females. Males have the minimum threshold at 11 kHz (58 dB SPL), higher about 5 dB than that at 3 kHz for females. The best excitatory frequencies of single units are mostly between 3 and 5 kHz in females and at 7–8 kHz in males. The underlying mechanism of auditory sexual differences is discussed.  相似文献   

12.
The song of the male bushcricket Ancistrura nigrovittata consists of a sequence of verses. Each verse comprises a syllable group, plus, after about 400 ms a single syllable serving as a trigger for the female response song. The carrier frequency of the male song spectrum peaks at around 15 kHz, while the female song peaks at around 27 kHz. The thresholds of female responses to models of male songs are lowest for song frequencies between 12 and 16 kHz and therefore correspond to the male song spectrum. The threshold curve of the female response to the trigger syllable at different frequencies has the same shape as the tuning for the syllable group. Phonotactic thresholds of male Ancistrura nigrovittata to synthetic female responses at different frequencies are lowest between 24 and 28 kHz and thereby correspond to the female song spectrum and clearly differ from female response thresholds. Activity of the tympanic fibre bundle of both sexes is most sensitive between 15 and 35 kHz and therefore not specifically tuned to the partner's song. Individual behavioural thresholds have their minimum within 10 dB of the values of tympanic thresholds.  相似文献   

13.
Summary The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).Abbreviations CM cochlear microphonic potential - IID interaural intensity difference - IID-MRA minimum resolvable angle calculated from interaural intensity difference - MRA minimum resolvable angle - OTD interaural ongoing time difference - RMS root mean square - SPL sound pressure level  相似文献   

14.
Zhang X  Dai Y  Zhang S  She W  Du X  Shui X 《PloS one》2012,7(1):e28961

Background

It has been believed that location of the perforation has a significant impact on hearing loss. However, recent studies have demonstrated that the perforation sites had no impact on hearing loss. We measured the velocity and pattern of the manubrium vibration in guinea pigs with intact and perforated eardrum using a laser Doppler vibrometer in order to determine the effects of different location perforations on the middle ear transfer functions.

Methods

Two bullas from 2 guinea pigs were used to determine stability of the umbo velocities, and 12 bullas from six guinea pigs to determine the effects of different location perforations on sound transmission. The manubrium velocity was measured at three points on the manubrium in the frequencies of 0.5–8 kHz before and after a perforation was made. The sites of perforations were in anterior-inferior (AI) quadrants of left ears and posterior-inferior (PI) quadrants of right ears.

Results

The manubrium vibration velocity losses were noticed in the perforated ears only below 1.5 kHz. The maximum velocity loss was about 7 dB at 500 Hz with the PI perforation. No significant difference in the velocity loss was found between AI and PI perforations. The average ratio of short process velocity to the umbo velocity was approximately 0.5 at all frequencies. No significant differences were found before and after perforation at all frequencies (p>0.05) except 7 kHz (p = 0.004) for both AI and PI perforations.

Conclusions

The manubrium vibration velocity losses from eardrum perforation were frequency-dependent and the largest losses occur at low frequencies. Manubrium velocity losses caused by small acute inferior perforations in guinea pigs have no significant impact on middle ear sound transmission at any frequency tested. The manubrium vibration axis may be perpendicular to the manubrium below 8 kHz in guinea pigs.  相似文献   

15.
The production and reception of biologically significant sounds was examined in Neoconocephalus robustus males and females in order to better understand their mechanisms of communication. Wave form and spectral analyses were made on the stridulatory signal by using a computer-based digital signal processing system, MITSYN. The results revealed a narrow band of carrier frequencies with a peak energy level at 8 kHz, which derives mainly from the rate of scraper-file contact on the wings. The call signal remains unmodulated in frequency and amplitude, and uninterrupted for periods of up to 28 min. The sound pressure level of the call signal ranges from 104 to 121 dB at 1 to 10 cm. Estimates of the amount of metabolic energy expended during stridulation suggest that N. robustus males are highly efficient organisms which are capable of converting a significant portion of this energy to sound power. Auditory sensitivity of male and females was studied by electro-physiological recordings from the tympanic nerves and cervical connectives anterior to the prothoracic ganglion. The results revealed a high frequency audiogram, showing greatest sensitivity in the range of the carrier band and heighten sensitivity from about 6 to 25 kHz.  相似文献   

16.
The separate impulses contributed by the A1 and A2 acoustic sense cells in the tympanic organs of the noctuids, Autographa pseudogamma and Noctua c.-nigrum, and by the A1, A2, and A3 sense cells in the tympanic organ of the geometrid, Ennomos magnarius, were identified and counted from oscillograms grams made as the moths were exposed to ultrasonic pulses of different intensities. These data were used to construct curves relating the response/intensity characteristics of the less sensitive acoustic sense cells to that of the most sensitive unit, A1. The A2 sense cells of the noctuids were found to be from 20 to 30 dB less sensitive than A1 at sound frequencies to which these ears are most sensitive. In the geometrid it was found that the A2 sense cell was 15 dB less sensitive than A1 and 12 dB more sensitive than A3. Only traces of the response of the fourth geometrid acoustic sense cell (A4) could be identified at high sound intensities. In both noctuids and geometrids the acoustic sensitivity of A2 relative to A1 remained unchanged when tested at selected ultrasonic frequencies between 28 and 50 kHz. This confirms the conclusion that the ears of these moths are incapable of pitch discrimination over this frequency range. Each of the systems had a dynamic range of 40 to 45 dB, that of the geometrid showing greater range overlap of the four A cells and hence greater capacity for sound intensity discrimination.  相似文献   

17.
Pair formation in the bushcricket Gampsocleis gratiosa is achieved through acoustic signalling by the male and phonotactic approaches of the female towards the calling song. On a walking belt in the free sound field, females tracked the position of the speaker broadcasting the male calling song with a remarkable precision, deviating by no more than 10 cm in either direction from the ideal course. Starting with stimulus angles of 6–10° the females significantly turned to the correct side, and with stimulus angles greater than 25° no incorrect turns were made. Using neurophysiological data on the directionality of the ear we calculated that with such stimulus angles the available binaural intensity difference is in the order of 1–2 dB. We developed a dichotic ear stimulation device for freely moving females with a cross-talk barrier of about 50 dB, which allowed to precisely apply small binaural intensity differences. In such a dichotic stimulation paradigm, females on average turned to the tronger stimulated side starting with a 1 dB difference between both ears. The significance of such a reliable lateralization behaviour with small interaural intensity differences for phonotactic behaviour under natural conditions is discussed.  相似文献   

18.
Summary The auditory thresholds of three frogs-two subspecies of the genusHyla (H. a. arborea, H. a. savignyi) and one of the genusRana (R. r. ridibunda)—were measured at 5°, 12°, 20° and 28°C, by recording multi-unit activity from the torus semicircularis. In the tree frogs, the upper limit of the audible range is 7,000 Hz. At 5°C the best frequency is 3,000 Hz; the threshold (expressed in dB SPL in all cases) at this frequency is 49 dB (males) and 43 dB (females) forH. a. arborea and 42 dB (males) and 48 dB (females) forH. a. savignyi. At 12°C the thresholds are lower, and they are lower still at 20°, reaching a minimum, at 3,000 Hz, of 42 dB (males) and 38 dB (females) forH. a. arborea and 41 dB (males) and 40 dB (females) forH. a. savignyi. At frequencies of 1,000 Hz and lower, thresholds are high at 5°C; in part of this range they are considerably lowered at 20°C, whereas at 28°C there is a reduction in sensitivity to most frequencies inH. a. arborea, amounting to more than 10 dB in the males.H. a. savignyi differs in this regard; at 28° sensitivity is no less than at lower temperatures, and in fact is greater in the range 1,000–1,400 Hz. The audible range ofR. r. ridibunda is more restricted than that of the tree frogs, but it is more sensitive within this range. The highest frequency is 4,500 Hz. At 5°C the thresholds of the males are lowest at 500–600 Hz (42 dB) and 1,400–1,900 Hz (ca. 39 dB). The best frequencies of the females are 700 Hz (38 dB) and 1,400 Hz (36 dB). At 12°C the thresholds at 300 Hz and 1,000 Hz are markedly lowered, by 10–18 dB. The thresholds of the females at 20°C are still lower over almost the entire audible range, whereas in the males only part of the range is affected. This difference persists at 28°C, the threshold curve of the males being slightly raised, while that of the females is unchanged. Latencies are dependent upon temperature and sound pressure. With a rise in temperature from 5° to 20°C the latency falls by ca. 8 ms. An increase in sound pressure from 5 dB to 30 dB SPL shortens the latency by ca. 10 ms. These changes were found in all the frogs studied.  相似文献   

19.
Summary Physiological recordings were obtained from identified receptors in the tympanal organ ofGryllus bimaculatus. By immersing the prothoracic leg in Ringer solution and removing the anterior tympanic membrane the auditory receptors were exposed without significantly altering the frequency response of the auditory organ (Fig. 1). Each receptor was tuned to a specific sound frequency. For sound frequencies below this characteristic frequency the roll-off in sensitivity decreased from 20–30 dB/octave to 10–15 dB/octave as the characteristic frequency of receptors increased from 3–11 kHz (Fig. 4A). For each individual receptor the slope, dynamic range and maximum spike response were similar for different sound frequencies (Fig. 9A). The receptors were tonotopically organized with the characteristic frequency of the receptors increasing from the proximal to the distal end of the array (Figs. 5, 6). Several receptors had characteristic frequencies of 5 kHz. These receptors were divided into two groups on the basis of their maximum spike response produced in response to pure tones of increasing intensity (Fig. 7). Independent of the tuning of the receptor no two-tone inhibition was observed in the periphery, thus confirming that such interactions are a property of central integration.  相似文献   

20.
1.  Responses of 73 fibers to dorso-ventral vibration were recorded in the saccular and utricular branchlets of Rana pipiens pipiens using a ventral approach. The saccular branchlet contained nearly exclusively vibration-sensitive fibers (33 out of 36) with best frequencies (BFs) between 10 and 70 Hz, whereas none of the 37 fibers encountered in the utricular branchlet responded to dorso-ventral vibrations.
2.  Using a dorsal approach we recorded from the VIIIth nerve near its entry in the brainstem and analyzed responses to both sound and vibration stimuli for 65 fibers in R. pipiens pipiens and 25 fibers in Leptodactylus albilabris. The fibers were classified as amphibian papilla (AP), basilar papilla (BP), saccular or vestibular fibers based on their location in the nerve. Only AP and saccular fibers responded to vibrations. The AP-fibers responded to vibrations from 0.01 cm/s2 and to sound from 40 dB SPL by increasing their spike rate. Best frequencies (BFs) ranged from 60 to 900 Hz, and only fibers with BFs below 500 Hz responded to vibrations. The fibers had identical BF's for sound and vibration. The saccular fibers had BFs ranging from 10 to 80 Hz with 22 fibers having BFs at 40–50 Hz. The fibers responded to sound from 70 dB SPL and'to vibrations from 0.01 cm/s2.
3.  No differences in sensitivity, tuning or phase-locking were found between the two species, except that most BP-fibers in R. pipiens pipiens had BFs from 1.2 to 1.4 kHz, whereas those in L. albilabris had BFs from 2.0 to 2.2 kHz (matching the energy peak of L. albilabris' mating call).
4.  The finding that the low-frequency amphibian papilla fibers are extremely sensitive to vibrations raises questions regarding their function in the behaving animal. They may be substrate vibration receptors, respond to sound-induced vibrations or bone-conducted sound.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号